Collaborative Research: CPS: Medium: Spatio-Temporal Logics for Analyzing and Querying Perception Systems

合作研究:CPS:媒介:用于分析和查询感知系统的时空逻辑

基本信息

  • 批准号:
    2038666
  • 负责人:
  • 金额:
    $ 79.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

The goals of Automated Driving Systems (ADS) and Advanced Driver Assistance Systems (ADAS) include reduction in accidental deaths, enhanced mobility for differently abled people, and an overall improvement in the quality of life for the general public. Such systems typically operate in open and highly uncertain environments for which robust perception systems are essential. However, despite the tremendous theoretical and experimental progress in computer vision, machine learning, and sensor fusion, the form and conditions under which guarantees should be provided for perception components is still unclear. The state-of-the-art is to perform scenario-based evaluation of data against ground truth values, but this has only limited impact. The lack of formal metrics to analyze the quality of perception systems has already led to several catastrophic incidents and a plateau in ADS/ADAS development. This project develops formal languages for specifying and evaluating the quality and robustness of perception sub-systems within ADS and ADAS applications. To enable broader dissemination of this technology, the project develops graduate and undergraduate curricula to train engineers in the use of such methods, and new educational modules to explain the challenges in developing safe and robust ADS for outreach and public engagement activities. To broaden participation in computing, the investigators target the inclusion of undergraduate women in research and development phases through summer internships.The formal language developed in this project is based on a new spatio-temporal logic pioneered by the investigators. This logic allows one to simultaneously perform temporal reasoning about streaming perception data, and spatially reason about objects both within a single frame of the data and across frames. The project also develops quantitative semantics for this logic, which provides the user with quantifiable quality metrics for perception sub-systems. These semantics enable comparisons between different perception systems and architectures. Crucially, the formal language facilitates the process of abstracting away implementation details, which in turn allows system designers and regulators to specify assumptions and guarantees for system performance at a higher-level of abstraction. An interesting benefit of this formal language is that it enables querying of databases with perception data for specific driving scenarios without the need for the highly manual process of creating ground truth annotations. Such a formal language currently does not exist, and this is a huge impediment to building a thriving marketplace for perception components used in safety-critical systems. This framework sets the foundation for a requirements language between suppliers of perception components and automotive companies. The open source and publicly available software tools developed in this project will assist with testing of perception systems by engineers and governmental agencies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自动驾驶系统(ADS)和高级驾驶员辅助系统(ADAS)的目标包括减少意外死亡,增强不同能力人群的移动性,以及全面提高公众的生活质量。这种系统通常在开放和高度不确定的环境中运行,鲁棒的感知系统是必不可少的。然而,尽管在计算机视觉、机器学习和传感器融合方面取得了巨大的理论和实验进展,但为感知组件提供保证的形式和条件仍然不清楚。最先进的方法是根据地面实况值对数据进行基于MIMO的评估,但这只会产生有限的影响。缺乏正式的指标来分析感知系统的质量已经导致了几次灾难性的事件和ADS/ADAS开发的停滞。该项目开发用于指定和评估ADS和ADAS应用中感知子系统的质量和鲁棒性的正式语言。 为了能够更广泛地传播这种技术,该项目开发了研究生和本科生课程,以培训工程师使用这种方法,并开发了新的教育模块,以解释在开发安全和强大的ADS用于外联和公众参与活动方面的挑战。为了扩大对计算的参与,调查人员的目标是通过暑期实习将本科女生纳入研究和开发阶段。该项目开发的正式语言基于调查人员开创的新时空逻辑。该逻辑允许同时执行关于流式感知数据的时间推理,以及关于数据的单个帧内和跨帧的对象的空间推理。 该项目还开发了定量语义的逻辑,它为用户提供了可量化的质量指标的感知子系统。这些语义使不同的感知系统和架构之间的比较。最重要的是,形式化语言促进了抽象实现细节的过程,这反过来又允许系统设计者和监管者在更高的抽象级别上指定对系统性能的假设和保证。这种形式化语言的一个有趣的好处是,它可以使用特定驾驶场景的感知数据查询数据库,而无需创建地面实况注释的高度手动过程。这种形式化的语言目前还不存在,这对于为安全关键系统中使用的感知组件建立繁荣的市场是一个巨大的障碍。该框架为感知组件供应商和汽车公司之间的需求语言奠定了基础。该项目开发的开源和公开可用的软件工具将有助于工程师和政府机构测试感知系统。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Targeted Attack on Deep RL-based Autonomous Driving with Learned Visual Patterns
PerceMon: Online Monitoring for Perception Systems
  • DOI:
    10.1007/978-3-030-88494-9_18
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anand Balakrishnan;Jyotirmoy V. Deshmukh;Bardh Hoxha;Tomoya Yamaguchi;Georgios Fainekos
  • 通讯作者:
    Anand Balakrishnan;Jyotirmoy V. Deshmukh;Bardh Hoxha;Tomoya Yamaguchi;Georgios Fainekos
Covariate Shift Detection via Domain Interpolation Sensitivity
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tejas Gokhale;Joshua Forster Feinglass
  • 通讯作者:
    Tejas Gokhale;Joshua Forster Feinglass
Towards Addressing the Misalignment of Object Proposal Evaluation for Vision-Language Tasks via Semantic Grounding
PyFoReL: A Domain-Specific Language for Formal Requirements in Temporal Logic
PyFoReL:用于时态逻辑中形式要求的特定于领域的语言
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yezhou Yang其他文献

Integrated Sensing Systems for Monitoring Interrelated Physiological Parameters in Young and Aged Adults
用于监测年轻人和老年人相关生理参数的集成传感系统
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Mark Sprowls;Michael Serhan;En;Lancy Lin;Christopher W. Frames;I. Kucherenko;Keyvan Mollaeian;Yang Li;V. Jammula;D. Logeswaran;M. Khine;Yezhou Yang;T. Lockhart;J. Claussen;Liang Dong;Julian J‐L Chen;Juan;Carmen Gomes;Daejin Kim;Teresa Wu;J. Margrett;Balaji Narasimhan;E. Forzani
  • 通讯作者:
    E. Forzani
Evaluating Safety Metrics for Vulnerable Road Users at Urban Traffic Intersections Using High-Density Infrastructure LiDAR System
使用高密度基础设施 LiDAR 系统评估城市交通交叉口弱势道路使用者的安全指标
  • DOI:
    10.4271/2024-01-2641
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prabin Kumar Rath;Blake Harrison;Duo Lu;Yezhou Yang;Jeffrey Wishart;Hongbin Yu
  • 通讯作者:
    Hongbin Yu
Radiant exposure level comparison between Gaussian and top hat beams in various scanning patterns.
各种扫描模式下高斯光束和高帽光束的辐射暴露水平比较。
  • DOI:
    10.1364/ao.53.008585
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    P. U.;Yezhou Yang;H. Le;Do
  • 通讯作者:
    Do
Visuo-Lingustic Question Answering (VLQA) Challenge
视觉语言问答 (VLQA) 挑战
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shailaja Keyur Sampat;Yezhou Yang;Chitta Baral
  • 通讯作者:
    Chitta Baral
Directional effects of correlated wind and waves on the dynamic response of long-span sea-crossing bridges
相关风浪方向效应对大跨跨海大桥动力响应的影响
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Rugang Yang;Yongle Li;Cheng Xu;Yezhou Yang;Chen Fang
  • 通讯作者:
    Chen Fang

Yezhou Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yezhou Yang', 18)}}的其他基金

PFI-TT: Broadening Real-Time Continuous Traffic Analysis on the Roadside using AI-Powered Smart Cameras
PFI-TT:使用人工智能驱动的智能摄像头扩大路边实时连续交通分析
  • 批准号:
    2329780
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Continuing Grant
RI: Small: SM-An Active Approach for Data Engineering to Improve Vision-Language Tasks
RI:小型:SM - 一种改进视觉语言任务的数据工程主动方法
  • 批准号:
    2132724
  • 财政年份:
    2022
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Continuing Grant
I-Corps: Determining occupant load and location through machine vision with on-device image processing
I-Corps:通过机器视觉和设备上的图像处理确定乘员负载和位置
  • 批准号:
    2054807
  • 财政年份:
    2021
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
CAREER: Visual Recognition with Knowledge
职业:具有知识的视觉识别
  • 批准号:
    1750082
  • 财政年份:
    2018
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
  • 批准号:
    2423130
  • 财政年份:
    2024
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
  • 批准号:
    2333980
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2401007
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
  • 批准号:
    2235231
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了