CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
基本信息
- 批准号:2054964
- 负责人:
- 金额:$ 40.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Earth's core is a ball of mostly iron metal. It consists of a liquid outer shell - the outer core - enveloping the solid inner core. As the Earth cools down over time, liquid iron freezes, growing the inner core and providing energy to the outer core to generate Earth’s magnetic field. The inner core is spherical in shape but appears not to be uniform. The speed of seismic waves traveling through it depends on their direction, a feature known as anisotropy. Seismic waves traversing the inner core along a north-south path (near-parallel to the Earth’s rotation axis) go faster than those propagating along an east-west path (in the plane of the equator). Inner-core seismic anisotropy carries information about the conditions at the time of iron freezing. It has been attributed to alignment of iron crystals in specific directions; but the processes causing this alignment is unclear. Interpreting this feature has been challenging because of the complex processes involved and the extreme pressures and temperatures prevailing in the core. Here, the researchers test experimentally how samples of iron behave at core conditions. They analyse data from experiments carried out in the diamond anvil cell where extreme conditions are generated at the tips of two opposing diamonds. They use computational models to characterpize iron crystal alignment during the experiments and calculate the resulting seismic velocities. They use seismic analytical methods to map the velocity structure of the inner core. Combined with geodynamic modeling, the multidisciplinary approach allows simulating inner-core growth and unveiling the processes causing its present-day anisotropy. The project supports an early career scientist. It promotes the training in a multidisciplinary context of graduate and undergraduate students, notably from underrepresented groups in geosciences. It fosters outreach towards local schools and community colleges. The project outcomes will be broadly and freely distributed to the community. Understanding inner-core crystallization is central to understanding the geodynamo. Inner-core seismic anisotropy is attributed to alignments of intrinsically anisotropic iron crystals. Here, the researchers investigate the causes and controlling factors of this anisotropy, and how inner-core processes influence outer core processes. Coupling seismic analysis, mineral physics experiments, and geodynamic modeling, they investigate the dynamics and mineralogical control of crystal alignments within the inner core. They use both laboratory data and computational plasticity models to constrain the behavior of iron at inner-core conditions, placing limits on the mineralogical processes able to generate seismic anisotropy. Concurrently, with geodynamic models they simulate inner-core growth and determine the pattern and strength of flows and forcing that impact crystal orientation. They test possible feedback of anisotropic thermal and electrical transport properties of aligned crystals on inner-core dynamic evolution. Existing and new seismic measurements provide observational constraints to test possible growth models for the inner core. Key questions addressed by the team are: how is global anisotropy generated during inner-core growth? What caused the present-day orientation of anisotropy? Can growth models be reconciled with spatial seismic structure across a range of length scales? What effect does crystallization texture have on final anisotropy? What are the implications of thermal and electrical anisotropy for the rest of the Earth, notably for the geodynamo?This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球的核心是主要是铁金属的球。它由液体外壳组成 - 外芯 - 包裹着固体内核。随着时间的流逝,液态铁冻结,增加内核并为外部芯产生地球磁场。内核的形状是球形的,但似乎并不统一。穿过它的地震波的速度取决于它们的方向,这是一种称为各向异性的特征。地震波沿着南北路径(与地球旋转轴接近平行)横穿内核的速度要比沿东西路径(在等方面的平面上)快的速度。内核地震各向异性携带有关铁冷冻时条件的信息。它归因于铁晶体在特定方向上的比对。但是导致这种对齐的过程尚不清楚。由于涉及复杂的过程以及核心中普遍存在的极端压力和温度,解释此功能受到了挑战。在这里,研究人员在实验中测试了铁的样品在核心条件下的表现。他们分析了在钻石砧室中进行的实验中的数据,在两种相对的钻石的尖端产生了极端条件。他们使用计算模型来表征实验过程中铁晶体对齐的表征,并计算产生的地震速度。他们使用地震分析方法来绘制内核的速度结构。与地球动力学建模相结合,多学科方法允许模拟内部核心生长并揭示导致其当今各向异性的过程。该项目支持早期的职业科学家。它在研究生和本科生的多学科背景下促进了培训,特别是来自地球科学中代表性不足的群体。它促进了对当地学校和社区大学的宣传。项目成果将广泛,自由地分发给社区。理解内部核心结晶对于理解地球诺(Geodynamo)至关重要。内核地震各向异性归因于本质上各向异性铁晶体的比对。在这里,研究人员研究了这种各向异性的原因和控制因素,以及内部核心过程如何影响外部核心过程。耦合地震分析,矿物质实验和地球动力学建模,他们研究了内核内晶体比对的动力学和矿物学控制。他们使用实验室数据和计算可塑性模型来限制铁在内部核心条件下的行为,从而对能够生成地震各向异性的矿物过程限制。同时,通过地球动力学模型,它们模拟了内部核心的生长,并确定流动的模式和强度,并迫使这种影响晶体取向。他们测试了对齐晶体在内部核心动态进化中的各向异性热和电运输特性的可能反馈。现有和新的地震测量结果提供了观察性约束,以测试内核的可能增长模型。团队解决的关键问题是:如何在内部核心增长过程中产生全球各向异性?是什么原因导致各向异性的方向?在一系列长度范围内,生长模型是否可以与空间地震结构进行对帐?结晶纹理对最终各向异性有什么影响?热和电动各向异性对地球其他地区的影响是什么?该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,通过评估被认为是宝贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Buffett其他文献
Bruce Buffett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Buffett', 18)}}的其他基金
NSF-SNSF: Dynamics of the Earth's core under the plesio-geostrophy paradigm
NSF-SNSF:准地转范式下的地核动力学
- 批准号:
2401254 - 财政年份:2023
- 资助金额:
$ 40.82万 - 项目类别:
Standard Grant
Data-driven detection of waves in Earth's core and geophysical interpretation
数据驱动的地核波探测和地球物理解释
- 批准号:
2214244 - 财政年份:2022
- 资助金额:
$ 40.82万 - 项目类别:
Standard Grant
Cooperative Institute for Dynamic Earth Research: Fluid and Magma Transport at Plate Boundaries
动态地球研究合作研究所:板块边界的流体和岩浆输送
- 批准号:
2025195 - 财政年份:2021
- 资助金额:
$ 40.82万 - 项目类别:
Standard Grant
Detecting and Inverting Magnetic Waves for the Structure and Dynamics of Earth's Core
探测和反演磁波以了解地核的结构和动力学
- 批准号:
1915807 - 财政年份:2019
- 资助金额:
$ 40.82万 - 项目类别:
Standard Grant
Cooperative Institute for Dynamic Earth Research
动力地球研究所合作研究所
- 批准号:
1903727 - 财政年份:2019
- 资助金额:
$ 40.82万 - 项目类别:
Standard Grant
Cooperative Institute for Dynamic Earth Research
动力地球研究所合作研究所
- 批准号:
1664595 - 财政年份:2018
- 资助金额:
$ 40.82万 - 项目类别:
Standard Grant
Interpreting the Paleomagnetic Field Using Stochastic Models
使用随机模型解释古磁场
- 批准号:
1644644 - 财政年份:2017
- 资助金额:
$ 40.82万 - 项目类别:
Continuing Grant
Geomagnetic Signals from the Earth's Core: Searching for Evidence of Waves and Stable Stratification
来自地核的地磁信号:寻找波和稳定层结的证据
- 批准号:
1430526 - 财政年份:2014
- 资助金额:
$ 40.82万 - 项目类别:
Standard Grant
Integrated Models of Mantle Convection and True Polar Wander, and the Structure of the Earth's Deep Interior
地幔对流和真实极地漂移的综合模型以及地球深层内部结构
- 批准号:
1246670 - 财政年份:2013
- 资助金额:
$ 40.82万 - 项目类别:
Standard Grant
CSEDI: Support for 13th SEDI Meeting in Leeds, UK
CSEDI:支持在英国利兹举行的第 13 届 SEDI 会议
- 批准号:
1228393 - 财政年份:2012
- 资助金额:
$ 40.82万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2154072 - 财政年份:2022
- 资助金额:
$ 40.82万 - 项目类别:
Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2153688 - 财政年份:2022
- 资助金额:
$ 40.82万 - 项目类别:
Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2153910 - 财政年份:2022
- 资助金额:
$ 40.82万 - 项目类别:
Continuing Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
- 批准号:
2054884 - 财政年份:2021
- 资助金额:
$ 40.82万 - 项目类别:
Standard Grant
CSEDI Collaborative Research: Understanding of the effects of large planetesimal collisions on Hadean Earth mantle dynamics
CSEDI合作研究:了解大型星子碰撞对冥古宙地幔动力学的影响
- 批准号:
2102571 - 财政年份:2021
- 资助金额:
$ 40.82万 - 项目类别:
Standard Grant