CAS: Revealing the Atomic and Electronic Structures of the Photoelectrode/Catalyst/Water Interfaces and Their Effects on Solar Water Splitting

CAS:揭示光电极/催化剂/水界面的原子和电子结构及其对太阳能水分解的影响

基本信息

  • 批准号:
    2054986
  • 负责人:
  • 金额:
    $ 56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

With the support of the Chemical Catalysis Program in the Division of Chemistry, Professor Kyoung-Shin Choi of the University of Wisconsin-Madison and Professor Giulia Galli of the University of Chicago are studying semiconductor electrodes that can utilize solar energy to split water and produce hydrogen gas, a clean fuel. These electrodes are called photoelectrodes, and their overall performance is affected considerably by their surface composition and structure. Using combined experimental and computational approaches, Choi and Galli aim to obtain a microscopic understanding of how the surface composition and structure of a photoelectrode affect the interfaces of the photoelectrode, the catalyst coating, and the surrounding water. They will then investigate how these interfacial structures influence the device-level performance. These studies are expected to have broad scientific impact, informing the rational design of optimal interfaces for efficient solar water splitting. In addition, as part of this project, Professors Choi and Galli will make tutorials on how to validate theoretical structural models and on how to compare theoretical and experimental results in a robust manner. This will enhance the infrastructure available for guiding other researchers studying solar water splitting and related systems using similar approaches. This project will also train graduate students in a highly interdisciplinary environment and generate versatile researchers in the field of clean fuel production using renewable solar energy. The project will broadly benefit society by building fundamental scientific knowledge toward the sustainable production of clean fuel.With the support of the Chemical Catalysis program in the Division of Chemistry, Professor Kyoung-Shin Choi of the University of Wisconsin-Madison and Professor Giulia Galli of the University of Chicago are studying photoelectrodes that can utilize solar energy to split water and produce hydrogen gas, a clean fuel. The overall goals of their study are to elucidate the atomic details of the impact that the surface and interface of photoelectrodes have on their photoelectrochemical properties using tightly integrated experimental and computational investigations and to establish interface-photoelectrochemical property relationships. Using V-rich and Bi-rich BiVO4 (010) epitaxial photoelectrodes, Choi and Galli have previously demonstrated that the surface composition/structure can remarkably affect the surface energetics and photoelectrochemical properties of BiVO4 even for the same (010) facet. Using these experimentally and computationally well-understood V-rich and Bi-rich BiVO4 (010) surfaces, the PIs will investigate how the surface composition and structure affect the atomic and electronic structures at the BiVO4/oxygen evolution catalyst (OEC), BiVO4/water, and BiVO4/OEC/water interfaces. Then, the same types of interfaces will be formed using V-rich and Bi-rich BiVO4 with a different exposed facet to extract the general effects of the surface composition that are independent of the facet type. This project will provide a microscopic understanding of how the surface composition and structure of a photoelectrode affect the photoelectrode/OEC/water interface and the device-level performance beyond the typical phenomenological studies and understanding of photoelectrode surfaces and interfaces. These studies will address critical questions in the solar fuel field and have the potential to greatly enable the design of optimal interfaces for efficient solar water splitting, an outcome that would be a key advancement in the quest to build out new clean energy technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学催化项目的支持下,威斯康星大学麦迪逊分校的崔桂信教授和芝加哥大学的Giulia Galli教授正在研究半导体电极,该电极可以利用太阳能分解水并产生氢气,这是一种清洁燃料。这些电极被称为光电极,它们的整体性能受其表面组成和结构的影响很大。使用实验和计算相结合的方法,Choi和Galli的目标是获得光电极的表面组成和结构如何影响光电极,催化剂涂层和周围水的界面的微观理解。然后,他们将研究这些界面结构如何影响设备级性能。这些研究预计将产生广泛的科学影响,为有效太阳能水分解的最佳界面的合理设计提供信息。此外,作为该项目的一部分,Choi教授和Galli教授将制作关于如何验证理论结构模型以及如何以稳健的方式比较理论和实验结果的教程。这将增强可用于指导其他研究人员使用类似方法研究太阳能水分解和相关系统的基础设施。该项目还将在高度跨学科的环境中培养研究生,并培养使用可再生太阳能生产清洁燃料领域的多功能研究人员。在化学系化学催化项目的支持下,威斯康星大学麦迪逊分校的崔桂信教授和芝加哥的Giulia Galli教授正在研究利用太阳能分解水,生产清洁燃料氢气的光电极。他们研究的总体目标是阐明光电极的表面和界面对其光电化学性质的影响的原子细节,使用紧密集成的实验和计算研究,并建立界面光电化学性质关系。使用富V和富Bi的BiVO 4(010)外延光电极,Choi和Galli先前已经证明,即使对于相同的(010)面,表面组成/结构也可以显着影响BiVO 4的表面能量学和光电化学性质。使用这些实验和计算充分理解的富V和富Bi BiVO 4(010)表面,PI将研究表面组成和结构如何影响BiVO 4/析氧催化剂(OEC),BiVO 4/水和BiVO 4/OEC/水界面的原子和电子结构。然后,将使用富V和富Bi的BiVO 4与不同的暴露面形成相同类型的界面,以提取与面类型无关的表面组成的一般效果。该项目将提供一个微观的理解如何光电极的表面组成和结构影响光电极/OEC/水界面和器件级的性能超出了典型的现象学研究和光电极表面和界面的理解。这些研究将解决太阳能燃料领域的关键问题,并有可能极大地促进高效太阳能水分解的最佳界面设计,这一成果将是寻求建立新的清洁能源技术的关键进步。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kyoung-Shin Choi其他文献

5,7,12,14-Pentacenetetrone as a cation storage electrode enabling preferential extraction and recovery of Casup2+/sup and Mgsup2+/sup
5,7,12,14-戊并四酮作为一种阳离子存储电极,能够优先提取和回收钙离子(Ca²⁺)和镁离子(Mg²⁺)
  • DOI:
    10.1016/j.cej.2025.160018
  • 发表时间:
    2025-01-15
  • 期刊:
  • 影响因子:
    13.200
  • 作者:
    Princess C. Merenini;Do-Hwan Nam;Kyoung-Shin Choi
  • 通讯作者:
    Kyoung-Shin Choi
Understanding two voltammetric features of water reduction and water oxidation in mild pH solutions
理解温和 pH 溶液中水还原和水氧化的两个伏安特征
  • DOI:
    10.1038/s41929-025-01339-0
  • 发表时间:
    2025-05-14
  • 期刊:
  • 影响因子:
    44.600
  • 作者:
    Xin Yuan;Michael T. Bender;Myohwa Ko;Kyoung-Shin Choi
  • 通讯作者:
    Kyoung-Shin Choi

Kyoung-Shin Choi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kyoung-Shin Choi', 18)}}的其他基金

An Atomic Level Understanding of Optimal Characteristics of TiO2 Protection Layers and Photoelectrode/TiO2 Interfaces for Efficient and Stable Solar Fuel Production
从原子水平了解 TiO2 保护层和光电极/TiO2 界面的最佳特性,以实现高效、稳定的太阳能燃料生产
  • 批准号:
    2350199
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Continuing Grant
PFI-TT: Prototype Batteries Enabling Energy Efficient Seawater Desalination
PFI-TT:原型电池实现高效节能海水淡化
  • 批准号:
    2016321
  • 财政年份:
    2020
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
New Strategies for Electrochemical Water Desalination Using Bi as a Cl-Storage Electrode
使用 Bi 作为 Cl 存储电极的电化学水淡化新策略
  • 批准号:
    1803496
  • 财政年份:
    2018
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
Coupled Experimental and Computational Investigation of Interfaces in Multicomponent Photoelectrodes for Solar Water Splitting
用于太阳能水分解的多组分光电极界面的耦合实验和计算研究
  • 批准号:
    1764399
  • 财政年份:
    2018
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
Revealing the drivers of galaxy formation in the densest cosmic environments
揭示最密集的宇宙环境中星系形成的驱动因素
  • 批准号:
    MR/X035166/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Fellowship
Revealing the regulatory mechanisms of endosomal cargo transporters
揭示内体货物转运蛋白的调控机制
  • 批准号:
    2337495
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320259
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320260
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
From Theory to Thrust: Revealing the Role of Actuation and Sensing in How Undulatory Swimmers Change Speed
从理论到推力:揭示驱动和传感在波动游泳者如何改变速度中的作用
  • 批准号:
    2345913
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
Revealing complexity of hyaluronan-protein interactions: novel tools and insights
揭示透明质酸-蛋白质相互作用的复杂性:新颖的工具和见解
  • 批准号:
    BB/X007278/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Research Grant
REVEALing Signatures of Habitable Worlds Hidden by Stellar Activity
揭示恒星活动隐藏的宜居世界的特征
  • 批准号:
    EP/Z000181/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Research Grant
Revealing the Nature of Dark Matter with JWST and Euclid
通过 JWST 和欧几里得揭示暗物质的本质
  • 批准号:
    ST/X003086/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Fellowship
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344214
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了