An Atomic Level Understanding of Optimal Characteristics of TiO2 Protection Layers and Photoelectrode/TiO2 Interfaces for Efficient and Stable Solar Fuel Production
从原子水平了解 TiO2 保护层和光电极/TiO2 界面的最佳特性,以实现高效、稳定的太阳能燃料生产
基本信息
- 批准号:2350199
- 负责人:
- 金额:$ 59.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Chemical Catalysis program in the Division of Chemistry, Professor Kyoung-Shin Choi of the University of Wisconsin-Madison and Professor Giulia Galli of the University of Chicago are studying semiconductor electrodes that can utilize solar energy to split water and produce hydrogen gas, a clean fuel. These semiconductor electrodes are called photoelectrodes, and they often need to be coated by a protection layer to enhance their performance and stability. To date, titanium dioxide (TiO2) has been the most extensively used material as a protection layer due to its inertness. However, the optimal characteristics of an effective TiO2 protection layer reported in the literature are inconsistent. Using combined experimental and computational approaches, Choi and Galli will work toward obtaining a microscopic understanding of how different photoelectrode-TiO2 interfaces influence overall photoelectrode performance. The teams aims to elucidate the photoelectrode-dependent characteristics of the TiO2 layer to optimally protect different types of photoelectrodes. This project is aimed at enabling the rational design of optimal photoelectrode/TiO2 assemblies for efficient and sustainable solar water splitting. In terms of broader impact, Choi and Galli will maintain a website that contains validated sets of data, which will be easily accessible and reusable by members of the community. This website will enhance the infrastructure for guiding researchers to study solar water splitting and other complex systems using combined experimental and computational approaches. This project will also train graduate students in a highly interdisciplinary environment and generate versatile researchers in the field of clean fuel production using renewable solar energy.Under this award, the Choi (U Wisconsin)/ Galli (U Chicago) team will study photoelectrodes that can utilize solar energy to split water and produce hydrogen gas, a clean fuel. . Choi and Galli will use tightly integrated experimental and computational investigations with the goal of achieving a comprehensive understanding of the photoelectrode-dependent characteristics of the TiO2 layer to optimally protect different types of photoelectrodes while maximizing photocurrent and photovoltage generation. The team will elucidate the impact of the photoelectrode/TiO2 interface on band alignments and electron-hole recombination. They will use n-BiVO4/TiO2, p-Cu2O/TiO2, and p-Si/TiO2 as model systems for oxide-based photoanodes, oxide-based photocathodes, and covalent photocathodes, respectively, to build toward a holistic understanding of photoelectrode/TiO2 interfaces. The team will vary the crystallinity, thickness, and deposition method of the TiO2 layer as well as the surface of the semiconductor electrode (composition and atomic arrangement) to systematically alter the interface and comprehensively investigate their impacts on the overall performance of the photoelectrodes. This project has the potential to provide critically needed rational guidelines for the preparation of optimal TiO2 protection layers for different types of photoelectrodes that can maximize the solar-to-fuel conversion efficiency and the stability of various photoelectrodes. Beyond this, the project will also offer strategies to combine experimental and computational investigations to study complex interfaces formed between metal oxides or between metal oxides and non-oxide semiconductors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学催化项目的支持下,威斯康星大学麦迪逊分校的崔桂信教授和芝加哥大学的Giulia Galli教授正在研究半导体电极,该电极可以利用太阳能分解水并产生氢气,这是一种清洁燃料。这些半导体电极被称为光电极,它们通常需要涂覆保护层以增强其性能和稳定性。迄今为止,二氧化钛(TiO 2)由于其惰性而成为最广泛用作保护层的材料。然而,在文献中报道的有效的TiO 2保护层的最佳特性是不一致的。使用实验和计算相结合的方法,Choi和Galli将致力于获得不同光电极-TiO 2界面如何影响整体光电极性能的微观理解。该团队的目标是阐明TiO 2层的光电依赖特性,以最佳地保护不同类型的光电极。该项目旨在合理设计最佳光电极/TiO 2组件,以实现高效和可持续的太阳能水分解。在更广泛的影响方面,Choi和Galli将维护一个网站,其中包含经过验证的数据集,社区成员可以轻松访问和重复使用。该网站将增强基础设施,指导研究人员使用实验和计算相结合的方法研究太阳能水分解和其他复杂系统。该项目还将在高度跨学科的环境中培养研究生,并培养利用可再生太阳能生产清洁燃料领域的多功能研究人员。根据该奖项,Choi(U威斯康星州)/ Galli(U芝加哥)团队将研究光电极,该光电极可以利用太阳能分解水并生产氢气,这是一种清洁燃料。. Choi和Galli将使用紧密集成的实验和计算研究,目标是全面了解TiO 2层的光电极依赖特性,以最佳地保护不同类型的光电极,同时最大限度地提高光电流和光电压的产生。该团队将阐明光电极/TiO 2界面对能带排列和电子空穴复合的影响。他们将分别使用n-BiVO 4/TiO 2、p-Cu 2 O/TiO 2和p-Si/TiO 2作为氧化物基光电阳极、氧化物基光电阴极和共价光电阴极的模型系统,以全面了解光电极/TiO 2界面。该团队将改变TiO 2层的结晶度,厚度和沉积方法以及半导体电极的表面(成分和原子排列),以系统地改变界面并全面研究它们对光电极整体性能的影响。该项目有可能为不同类型的光电极制备最佳TiO 2保护层提供急需的合理指导,从而最大限度地提高太阳能-燃料转换效率和各种光电极的稳定性。除此之外,该项目还将提供联合收割机实验和计算研究相结合的策略,以研究金属氧化物之间或金属氧化物与非氧化物半导体之间形成的复杂界面。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyoung-Shin Choi其他文献
5,7,12,14-Pentacenetetrone as a cation storage electrode enabling preferential extraction and recovery of Casup2+/sup and Mgsup2+/sup
5,7,12,14-戊并四酮作为一种阳离子存储电极,能够优先提取和回收钙离子(Ca²⁺)和镁离子(Mg²⁺)
- DOI:
10.1016/j.cej.2025.160018 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:13.200
- 作者:
Princess C. Merenini;Do-Hwan Nam;Kyoung-Shin Choi - 通讯作者:
Kyoung-Shin Choi
Understanding two voltammetric features of water reduction and water oxidation in mild pH solutions
理解温和 pH 溶液中水还原和水氧化的两个伏安特征
- DOI:
10.1038/s41929-025-01339-0 - 发表时间:
2025-05-14 - 期刊:
- 影响因子:44.600
- 作者:
Xin Yuan;Michael T. Bender;Myohwa Ko;Kyoung-Shin Choi - 通讯作者:
Kyoung-Shin Choi
Kyoung-Shin Choi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyoung-Shin Choi', 18)}}的其他基金
CAS: Revealing the Atomic and Electronic Structures of the Photoelectrode/Catalyst/Water Interfaces and Their Effects on Solar Water Splitting
CAS:揭示光电极/催化剂/水界面的原子和电子结构及其对太阳能水分解的影响
- 批准号:
2054986 - 财政年份:2021
- 资助金额:
$ 59.82万 - 项目类别:
Continuing Grant
PFI-TT: Prototype Batteries Enabling Energy Efficient Seawater Desalination
PFI-TT:原型电池实现高效节能海水淡化
- 批准号:
2016321 - 财政年份:2020
- 资助金额:
$ 59.82万 - 项目类别:
Standard Grant
New Strategies for Electrochemical Water Desalination Using Bi as a Cl-Storage Electrode
使用 Bi 作为 Cl 存储电极的电化学水淡化新策略
- 批准号:
1803496 - 财政年份:2018
- 资助金额:
$ 59.82万 - 项目类别:
Standard Grant
Coupled Experimental and Computational Investigation of Interfaces in Multicomponent Photoelectrodes for Solar Water Splitting
用于太阳能水分解的多组分光电极界面的耦合实验和计算研究
- 批准号:
1764399 - 财政年份:2018
- 资助金额:
$ 59.82万 - 项目类别:
Standard Grant
相似国自然基金
粒子level set方法的改进与空间自适应波浪模型并行化研究
- 批准号:52171245
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于Level Set方法的三维爆炸与冲击仿真软件开发及其应用
- 批准号:11502121
- 批准年份:2015
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
层级稀疏化的Mid-Level特征空间下高分辨率遥感影像检索方法研究
- 批准号:41401376
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
CPU/GPGPU紧耦合异构多核系统共享Last Level Cache优化研究
- 批准号:61379035
- 批准年份:2013
- 资助金额:75.0 万元
- 项目类别:面上项目
基于新LEVEL SET方法的双标量小火焰模型的研究
- 批准号:51306013
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Level Set方法及其在爆炸与冲击问题数值模拟中的应用研究
- 批准号:10872085
- 批准年份:2008
- 资助金额:48.0 万元
- 项目类别:面上项目
几何造型中交互式Level Set方法研究
- 批准号:60373036
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:面上项目
逆向工程中基于小波特征的曲面配准与Level-set建模方法研究
- 批准号:50305027
- 批准年份:2003
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
用Level Set方法研究气液两相流界面迁移的微观特性
- 批准号:50106011
- 批准年份:2001
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
- 批准号:
2340085 - 财政年份:2024
- 资助金额:
$ 59.82万 - 项目类别:
Continuing Grant
CAREER: Advancing Atomic-Level Understanding of Kinetically Driven Solid-Solid Phase Transitions from First Principles and Machine Learning
职业:从第一原理和机器学习推进对动力学驱动的固-固相变的原子级理解
- 批准号:
2238516 - 财政年份:2023
- 资助金额:
$ 59.82万 - 项目类别:
Continuing Grant
Cellular destruction at the atomic level: understanding the dynamic activation and regulation of caspase proteases
原子水平的细胞破坏:了解 caspase 蛋白酶的动态激活和调节
- 批准号:
441113 - 财政年份:2020
- 资助金额:
$ 59.82万 - 项目类别:
Fellowship Programs
NSF/DMR-BSF: Understanding Electro-Chemo-Mechanical Processes at the Atomic Level
NSF/DMR-BSF:了解原子水平上的电化学机械过程
- 批准号:
1911592 - 财政年份:2019
- 资助金额:
$ 59.82万 - 项目类别:
Continuing Grant
Student Support for 2015 Gordon Research Conference/Seminar: Physical Virology: Integrating Global Significance with Atomic Level Understanding; Ventura Beach, CA; January 2015
2015 年戈登研究会议/研讨会的学生支持:物理病毒学:将全球意义与原子水平理解相结合;
- 批准号:
1444099 - 财政年份:2014
- 资助金额:
$ 59.82万 - 项目类别:
Standard Grant
Lower temperature ironmaking: macro and atomic-level understanding of accelerated carburisation of reduced iron
低温炼铁:还原铁加速渗碳的宏观和原子水平理解
- 批准号:
LP110201146 - 财政年份:2012
- 资助金额:
$ 59.82万 - 项目类别:
Linkage Projects
Understanding sub-cellular systems at the atomic level.
在原子水平上了解亚细胞系统。
- 批准号:
DP110100327 - 财政年份:2011
- 资助金额:
$ 59.82万 - 项目类别:
Discovery Projects
UNDERSTANDING THE BROAD SUBSTRATE SPECIFICITY OF ALKA AT THE ATOMIC LEVEL
在原子水平上了解 ALKA 的广泛底物特异性
- 批准号:
8361670 - 财政年份:2011
- 资助金额:
$ 59.82万 - 项目类别:
UNDERSTANDING THE BROAD SUBSTRATE SPECIFICITY OF ALKA AT THE ATOMIC LEVEL
在原子水平上了解 ALKA 的广泛底物特异性
- 批准号:
8169326 - 财政年份:2010
- 资助金额:
$ 59.82万 - 项目类别:
Collaborative Research: Nanoscale Interdisciplinary Team Research on Understanding and Overcoming Atomic-Level Wear in Tip-Based Nanomanufacturing
合作研究:纳米级跨学科团队研究理解和克服基于尖端的纳米制造中的原子级磨损
- 批准号:
0825981 - 财政年份:2008
- 资助金额:
$ 59.82万 - 项目类别:
Interagency Agreement