Deformation Mechanisms Governing Torsional Fatigue Failure of Additively Manufactured Metals at High Temperatures

高温下增材制造金属扭转疲劳失效的变形机制

基本信息

  • 批准号:
    2055027
  • 负责人:
  • 金额:
    $ 14.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Recent advances in the 3D metal printing/additive manufacturing technology have allowed for the realization and rapid production of nickel-based metal superalloy components, extending their geometric design space and mechanical performance envelope. Nevertheless, there is a need to ensure that these additively manufactured components can withstand in-service operational conditions while meeting necessary functional requirements and durability. Torsional fatigue, characterized by cyclic twisting loads, is often an underlying cause for failure of nickel-based metal superalloys used in the extreme environments of rocket and jet engines, high performance automobiles, and pressure vessels. These extreme temperature environments are characterized by a complex loading state, in which the deformation mechanisms contributing to torsional fatigue failure remain unclear. This award supports fundamental research to delineate the principal deformation mechanisms at the microstructural level, which govern torsional fatigue failure of additively manufactured nickel-based metal superalloys subject to varying service conditions. This research will advance the current state of knowledge and maximize durability and viability of these alloys for in-service use, thereby maturing the current technology. Additionally, this study will broaden participation, outreach, and professional training of under-represented minority undergraduate and graduate students in STEM research spanning across the disciplines of mechanics, manufacturing, and materials science and engineering. Research outcomes will be used to establish enhanced educational curriculum/tools, including incorporation of a research project-based teaching and learning structure.The fundamental problem that this research addresses is capturing the micron scale to structural scale deformation response spectrum experienced by additively manufactured nickel superalloys under torsional fatigue loading conditions at ambient and high temperatures representing in-service component conditions. The role of temperature, varying cyclic torsional loadings, and additive manufacturing processing conditions and build orientation will be explored. A variety of material characterization techniques, such as energy dispersive spectroscopy, X-ray diffraction, and electron microscopy, will be used in conjunction with extensive fatigue testing to capture the driving microstructural mechanisms leading to torsional fatigue crack initiation and growth. It is anticipated that outcomes resulting from this study will reveal how torsional response of these alloys is impacted in terms of microstructural evolution under ambient and in-service operational conditions, potentially providing insights that will contribute to an understanding of their multiaxial fatigue response.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
3D金属打印/增材制造技术的最新进展已经允许实现和快速生产镍基金属高温合金部件,扩展其几何设计空间和机械性能范围。然而,需要确保这些增材制造的部件能够承受使用中的操作条件,同时满足必要的功能要求和耐用性。以循环扭转载荷为特征的扭转疲劳通常是在火箭和喷气发动机、高性能汽车和压力容器的极端环境中使用的镍基金属超合金失效的根本原因。这些极端温度环境的特征在于复杂的加载状态,其中导致扭转疲劳失效的变形机制仍不清楚。该奖项支持基础研究,以描绘微观结构水平的主要变形机制,这些机制控制增材制造的镍基金属高温合金在不同使用条件下的扭转疲劳失效。这项研究将推进目前的知识水平,并最大限度地提高这些合金的耐用性和可行性,从而使目前的技术成熟。此外,这项研究将扩大代表性不足的少数民族本科生和研究生在STEM研究中的参与,推广和专业培训,涵盖机械,制造和材料科学与工程等学科。研究成果将用于建立增强的教育课程/工具,包括纳入基于研究项目的教学结构。本研究解决的基本问题是捕获增材制造的镍超合金在环境和高温下的扭转疲劳载荷条件下所经历的微米尺度到结构尺度的变形响应谱,代表在役部件条件。温度的作用,不同的循环扭转载荷,增材制造工艺条件和构建方向将进行探讨。各种材料表征技术,如能量色散谱、X射线衍射和电子显微镜,将与广泛的疲劳试验结合使用,以捕获导致扭转疲劳裂纹萌生和生长的驱动微观结构机制。预计本研究的结果将揭示这些合金的扭转响应在环境和使用中操作条件下的微观结构演变方面如何受到影响,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的评估来支持。影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microstructural Defects Governing Torsional Fatigue Failure of Additively Manufactured As-Built and Heat-Treated Inconel 718
  • DOI:
    10.1016/j.engfailanal.2022.106975
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Sanna F. Siddiqui;Elise Araiza
  • 通讯作者:
    Sanna F. Siddiqui;Elise Araiza
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanna Siddiqui其他文献

Sanna Siddiqui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanna Siddiqui', 18)}}的其他基金

CAREER: Bridging Research & Education in Delineating Fatigue Performance & Damage Mechanisms in Metal Fused Filament Fabricated Inconel 718
职业:桥梁研究
  • 批准号:
    2338178
  • 财政年份:
    2024
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Standard Grant

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
  • 批准号:
    ES/Z502789/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Research Grant
Dissecting regulatory mechanisms governing histone H3 lysine 9 methylation
剖析组蛋白 H3 赖氨酸 9 甲基化的调控机制
  • 批准号:
    BB/Y002857/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Research Grant
Unravelling post-transcriptional mechanisms governing the plant's response to high temperature
揭示控制植物对高温反应的转录后机制
  • 批准号:
    BB/Y001672/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Research Grant
Synaptic mechanisms governing brain reserve
控制大脑储备的突触机制
  • 批准号:
    23K18449
  • 财政年份:
    2023
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Mechanisms Governing Uterine Epithelial Plasticity
子宫上皮可塑性的调控机制
  • 批准号:
    10710938
  • 财政年份:
    2023
  • 资助金额:
    $ 14.89万
  • 项目类别:
Mechanisms governing the differentiation and maintenance of atrial identity
心房特性分化和维持的机制
  • 批准号:
    10676430
  • 财政年份:
    2023
  • 资助金额:
    $ 14.89万
  • 项目类别:
Collaborative Research: Molecular mechanisms governing the cytoskeleton-mediated motility and distribution of peroxisomes and mitochondria in plants
合作研究:控制植物中细胞骨架介导的运动和过氧化物酶体和线粒体分布的分子机制
  • 批准号:
    2148207
  • 财政年份:
    2022
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Standard Grant
Experimental and Computational Investigation of Mechanisms Governing Soft Tissue Interfaces
软组织界面控制机制的实验和计算研究
  • 批准号:
    2225174
  • 财政年份:
    2022
  • 资助金额:
    $ 14.89万
  • 项目类别:
    Standard Grant
Neurochemical mechanisms governing footshock-induced suppression of methamphetamine intake
控制足部电击引起的甲基苯丙胺摄入抑制的神经化学机制
  • 批准号:
    10527890
  • 财政年份:
    2022
  • 资助金额:
    $ 14.89万
  • 项目类别:
Regulatory mechanisms governing imprinted domains during early development
早期发育过程中管理印记域的调控机制
  • 批准号:
    10697375
  • 财政年份:
    2022
  • 资助金额:
    $ 14.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了