Measuring and Modeling Visual Attention in Online Multimedia Instruction
在线多媒体教学中视觉注意力的测量和建模
基本信息
- 批准号:2055406
- 负责人:
- 金额:$ 48.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Online multimedia instruction is expected to grow. Yet, given the tendency for students’ minds to wander and to be distracted especially during online instruction, it is important for researchers and educators to understand how to help students to stay focused on the important information while ignoring the unimportant information. This project addresses two fundamental issues: How does the online Science, Technology, Engineering, and Mathematics (STEM) instructor or educational materials developer know when learners are effectively paying attention to the learning material? How can they use this information to improve the design of their online learning materials in STEM? Attention and learning outcomes will be collected for several hundred students as they use multiple online modules, over a semester-long of a university introductory physics course. These data will be used to predict students’ attention and how it relates to their learning outcomes. This information will then be used to help improve online multimedia instruction.This project addresses a gap between the known effects of attention on learning and attempts to translate those theoretical constructs into pedagogical practice in rigorously, reliably, and validly measurable ways. This study is the first to bridge the theory and methods of studying attention in cognitive science with educational practice during a semester-long university online course. It points the way to making rapid, ecologically valid progress in understanding the connections between students' moment-to-moment attentional states and their long-term STEM learning. Such progress could be useful in advancing policy and practice surrounding improving STEM learning. In Phase 1(Basic Research), the Principal Investigators (PIs) propose a longitudinal, naturalistic study of attention and learning from online instruction. The PIs will study several hundred students' attention to online learning materials, and their learning, over a semester-long of a large university introductory physics course. In Phase 2 (Applied Research), using the above information, the PIs will identify generalizable targets of change in students' attentional states by alerting students at critical moments of attentional lapses, or cueing their attention to relevant information. For instructors and instructional designers, the project will provide meaningful, high impact data on students' varying attentional states over time, and will pinpoint attentional deficiencies. The proposed research will develop an Attentional Toolkit that takes a two-pronged approach to leveraging students' attentional states and improving their educational outcomes. The first prong ("demand side") addresses the learner by measuring their level of attentiveness and alerting/cueing their attention. The second prong ("supply side") addresses the instructor or online materials developer. To improve the broader impact of their research, the PIs will seek out a diverse pool of participants and take all measures necessary to improve fairness and reduce bias. Further, because the proposed methods are likely generalizable across numerous educational domains, the Attentional Toolkit could be broadly used across educational disciplines. In addition to publications and presentations, the Attentional Toolkit will be made available to faculty. The PIs will also provide workshops to faculty who are teaching multimedia online courses on how to use the Attentional Toolkit. This project is funded by the EHR Core Research (ECR) program, which supports work that advances fundamental research on STEM learning and learning environments, broadening participation in STEM, and STEM workforce development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在线多媒体教学有望增长。然而,考虑到学生的思维倾向,特别是在在线教学中,走神和分心,研究人员和教育工作者了解如何帮助学生专注于重要信息,同时忽略不重要的信息是很重要的。该项目解决了两个基本问题:在线科学、技术、工程和数学(STEM)教师或教育材料开发者如何知道学习者何时有效地关注学习材料?他们如何利用这些信息来改进STEM在线学习材料的设计?数百名学生在一个学期的大学物理入门课程中使用多个在线模块,该项目将收集他们的注意力和学习成果。这些数据将用于预测学生的注意力及其与学习成果的关系。这些信息将用于帮助改进在线多媒体教学。这个项目解决了注意力对学习的已知影响和试图以严格、可靠和有效的可测量的方式将这些理论结构转化为教学实践之间的差距。本研究首次在一学期的大学在线课程中,将认知科学中注意力研究的理论和方法与教育实践相结合。它指出了在理解学生的即时注意力状态与他们的长期STEM学习之间的联系方面取得快速、生态有效进展的途径。这些进展可能有助于推进围绕改善STEM学习的政策和实践。在第一阶段(基础研究),首席研究员(pi)提出了一个纵向的,自然的研究注意力和学习在线教学。pi将研究数百名学生对在线学习材料的关注,以及他们在一个学期的大型大学物理入门课程中的学习情况。在第二阶段(应用研究)中,使用上述信息,pi将通过在学生注意力缺失的关键时刻提醒学生,或提示他们注意相关信息,来确定学生注意力状态变化的可概括目标。对于教师和教学设计师来说,该项目将为学生随时间变化的注意力状态提供有意义的、高影响力的数据,并将查明注意力缺陷。拟议的研究将开发一个注意力工具包,采用双管齐下的方法来利用学生的注意力状态和改善他们的教育成果。第一个方面(“需求方面”)通过测量学习者的注意力水平和提醒/提示他们的注意力来解决问题。第二个方面(“供应方”)针对的是讲师或在线材料开发人员。为了提高其研究的广泛影响,pi将寻找多样化的参与者,并采取一切必要措施来提高公平性和减少偏见。此外,由于提出的方法可能在许多教育领域推广,注意力工具包可以广泛地用于教育学科。除了出版物和演讲,注意力工具包将提供给教师。pi还将为教授如何使用注意力工具包的多媒体在线课程的教师提供讲习班。该项目由EHR核心研究(ECR)计划资助,该计划支持推进STEM学习和学习环境基础研究、扩大STEM参与和STEM劳动力发展的工作。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gazeformer: Scalable, Effective and Fast Prediction of Goal-Directed Human Attention
- DOI:10.1109/cvpr52729.2023.00145
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Sounak Mondal;Zhibo Yang;Seoyoung Ahn;D. Samaras;G. Zelinsky;Minh Hoai
- 通讯作者:Sounak Mondal;Zhibo Yang;Seoyoung Ahn;D. Samaras;G. Zelinsky;Minh Hoai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Minh Hoai Nguyen其他文献
Metric Learning for Image Alignment
- DOI:
10.1007/s11263-009-0299-9 - 发表时间:
2009-09-23 - 期刊:
- 影响因子:9.300
- 作者:
Minh Hoai Nguyen;Fernando de la Torre - 通讯作者:
Fernando de la Torre
Segment-based SVMs for Time Series Analysis
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Minh Hoai Nguyen - 通讯作者:
Minh Hoai Nguyen
A scanning focus nuclear microscope with multi-pinhole collimation
多针孔准直扫描聚焦核显微镜
- DOI:
10.1088/1361-6560/acbf9b - 发表时间:
2023 - 期刊:
- 影响因子:3.5
- 作者:
Minh Hoai Nguyen;Muhammad Arif;B. Oostenrijk;M. Goorden;F. Beekman - 通讯作者:
F. Beekman
Minh Hoai Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Minh Hoai Nguyen', 18)}}的其他基金
RI: Medium: Inverse Reinforcement Learning for Human Attention Modeling
RI:媒介:人类注意力建模的逆强化学习
- 批准号:
1763981 - 财政年份:2018
- 资助金额:
$ 48.66万 - 项目类别:
Continuing Grant
CRII: RI: Towards Large-Scale Recognition and Fine-Grain Analysis of Human Actions: Pulling Actions Out of Context
CRII:RI:迈向人类行为的大规模识别和细粒度分析:将行为脱离上下文
- 批准号:
1566248 - 财政年份:2016
- 资助金额:
$ 48.66万 - 项目类别:
Continuing Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
RI:Small: Modeling and Relating Visual Tasks
RI:Small:建模和关联视觉任务
- 批准号:
2329927 - 财政年份:2023
- 资助金额:
$ 48.66万 - 项目类别:
Continuing Grant
Collaborative Research: HCC: Medium: Modeling and Mitigating Confirmation Bias in Visual Data Analysis
合作研究:HCC:媒介:可视化数据分析中的建模和减轻确认偏差
- 批准号:
2311575 - 财政年份:2023
- 资助金额:
$ 48.66万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Learning by Looking: Modeling visual system representation formation via foveated sensing in a 3-D world
CRCNS 研究提案:通过观察学习:通过 3D 世界中的注视点感知对视觉系统表征形成进行建模
- 批准号:
2309041 - 财政年份:2023
- 资助金额:
$ 48.66万 - 项目类别:
Continuing Grant
Collaborative Research: HCC: Medium: Modeling and Mitigating Confirmation Bias in Visual Data Analysis
合作研究:HCC:媒介:可视化数据分析中的建模和减轻确认偏差
- 批准号:
2311574 - 财政年份:2023
- 资助金额:
$ 48.66万 - 项目类别:
Standard Grant
Visual-search ideal observers for modeling reader variability
视觉搜索理想观察者对读者变异性进行建模
- 批准号:
10530899 - 财政年份:2022
- 资助金额:
$ 48.66万 - 项目类别:
CRCNS US-Japan Research Proposal: Modeling the Dynamic Topological Representation of the Primate Visual System
CRCNS 美日研究提案:灵长类视觉系统的动态拓扑表示建模
- 批准号:
2208362 - 财政年份:2022
- 资助金额:
$ 48.66万 - 项目类别:
Standard Grant
Measuring and Modeling Visual Attention in Online Multimedia Instruction
在线多媒体教学中视觉注意力的测量和建模
- 批准号:
2100071 - 财政年份:2021
- 资助金额:
$ 48.66万 - 项目类别:
Standard Grant
Measuring and Modeling Visual Attention in Online Multimedia Instruction
在线多媒体教学中视觉注意力的测量和建模
- 批准号:
2100218 - 财政年份:2021
- 资助金额:
$ 48.66万 - 项目类别:
Standard Grant
Mid-level visual processing studied by generative image models and computational modeling
通过生成图像模型和计算建模研究中级视觉处理
- 批准号:
RGPIN-2019-06678 - 财政年份:2019
- 资助金额:
$ 48.66万 - 项目类别:
Discovery Grants Program - Individual
Mid-level visual processing studied by generative image models and computational modeling
通过生成图像模型和计算建模研究中级视觉处理
- 批准号:
DGECR-2019-00152 - 财政年份:2019
- 资助金额:
$ 48.66万 - 项目类别:
Discovery Launch Supplement