CRCNS Research Proposal: Learning by Looking: Modeling visual system representation formation via foveated sensing in a 3-D world
CRCNS 研究提案:通过观察学习:通过 3D 世界中的注视点感知对视觉系统表征形成进行建模
基本信息
- 批准号:2309041
- 负责人:
- 金额:$ 119万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Despite remarkable recent strides, current computer vision models still grapple with understanding the shapes of objects and the structure of the physical world as effectively as humans do. This project begins from the premise that the human ability to perceive and understand the visual world hinges on active exploration. By constructing a model that emulates key aspects of the human visual system--and learns to see through active exploration of its environment--this project seeks to broaden the understanding of human vision and assess whether machine learning systems that emulate human vision can harness some of its strengths. This scientific exploration carries considerable implications for cognitive neuroscience and machine learning, and has potential to inform the development of more robust and reliable artificial vision systems.To enhance computational understanding of vision and bridge the gap between human and machine perception, this project aims to develop a biologically-informed model that learns from active exploration of the visual world. Current computer vision models, constrained by uniform sampling of static two dimensional (2D) views, fall short in representing a three dimensional (3D) environment structure. This project tests the hypothesis that active sensing in a structured three-dimensional environment will lead to more robust representations that better capture world geometry, and also correspond more closely to the biological system. The project's main objectives are: (1) to develop a model with separate foveal and peripheral subsystems, coupled with a contrastive learning approach that contrasts foveal and peripheral views, enabling the system to bootstrap its own learning without explicit labels and without using artificial transformations; (2) to place this self-supervised learning system within a vivid, high-definition 3D realm, promoting active learning via diverse sampling policies; and (3) to thoroughly assess whether the model's learned representations demonstrate enhanced geometric representation relative to conventional models, using both computer vision benchmarks and alignment with human neural (fMRI) responses. Through these aims, this project aims to deepen understanding of how humans learn to see, strengthen the ties between computational neuroscience and machine learning, and pave the way for more human-like, robust, and reliable artificial vision technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管最近取得了显着的进步,但当前的计算机视觉模型仍然像人类一样有效地理解物体的形状和物理世界的结构。这个项目的前提是人类感知和理解视觉世界的能力取决于积极的探索。通过构建一个模拟人类视觉系统关键方面的模型,并学会通过对其环境的积极探索来观察,该项目旨在扩大对人类视觉的理解,并评估模拟人类视觉的机器学习系统是否可以利用其优势。这一科学探索对认知神经科学和机器学习具有重要意义,并有可能为更强大和可靠的人工视觉系统的开发提供信息。为了增强对视觉的计算理解,弥合人类和机器感知之间的差距,该项目旨在开发一种生物学信息模型,该模型从视觉世界的主动探索中学习。目前的计算机视觉模型,受静态二维(2D)视图的均匀采样的约束,在表示三维(3D)环境结构方面存在不足。该项目测试的假设是,在一个结构化的三维环境中的主动传感将导致更强大的表示,更好地捕捉世界的几何形状,也更密切地对应于生物系统。 该项目的主要目标是:(1)开发一个具有独立的中央凹和外围子系统的模型,再加上对比中央凹和外围视图的对比学习方法,使系统能够在没有明确标签和不使用人工转换的情况下引导自己的学习;(2)将这种自我监督学习系统置于生动、高清的3D领域中,通过不同的采样策略促进主动学习;以及(3)使用计算机视觉基准和与人类神经(fMRI)响应的比对,彻底评估模型的学习表示是否相对于传统模型表现出增强的几何表示。通过这些目标,该项目旨在加深对人类如何学习看的理解,加强计算神经科学和机器学习之间的联系,并为更像人类,更强大和更可靠的人工视觉技术铺平道路。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Talia Konkle其他文献
High-Level Features Organize Perceived Action Similarities
高级特征组织感知到的动作相似性
- DOI:
10.32470/ccn.2018.1120-0 - 发表时间:
2018 - 期刊:
- 影响因子:28.3
- 作者:
Leyla Tarhan;Talia Konkle - 通讯作者:
Talia Konkle
Normative Representation of Objects: Evidence for an Ecological Bias in Object Perception and Memory
物体的规范表示:物体感知和记忆中生态偏见的证据
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Talia Konkle;Aude Olivia - 通讯作者:
Aude Olivia
Learning statistical regularities can speed the encoding of information into working memory
学习统计规律可以加速信息编码到工作记忆中
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Juliana Y. Rhee;Talia Konkle;Timothy F. Brady;G. Alvarez - 通讯作者:
G. Alvarez
Organizational motifs of cortical responses to objects emerge in topographic projections of deep neural networks
皮层对物体反应的组织模式出现在深度神经网络的地形投影中
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.8
- 作者:
F. Doshi;Talia Konkle - 通讯作者:
Talia Konkle
Animacy and object size are reflected in perceptual similarity computations by the preschool years
学龄前儿童的感知相似性计算反映了动画性和物体大小
- DOI:
10.1080/13506285.2019.1664689 - 发表时间:
2019 - 期刊:
- 影响因子:2
- 作者:
Bria L Long;Mariko Moher;S. Carey;Talia Konkle - 通讯作者:
Talia Konkle
Talia Konkle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Talia Konkle', 18)}}的其他基金
CAREER: The Tuning and Topography of the Ventral Visual Stream
职业:腹侧视觉流的调节和地形
- 批准号:
1942438 - 财政年份:2020
- 资助金额:
$ 119万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 119万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Modeling traveling waves in the human cortex
CRCNS 研究提案:模拟人类皮层中的行波
- 批准号:
2309174 - 财政年份:2023
- 资助金额:
$ 119万 - 项目类别:
Continuing Grant
CRCNS US-German Research Proposal - The diversification of retinal ganglion cells: A combined transcriptomic, genome engineering and imaging approach
CRCNS 美国-德国研究提案 - 视网膜神经节细胞的多样化:转录组学、基因组工程和成像相结合的方法
- 批准号:
2309039 - 财政年份:2023
- 资助金额:
$ 119万 - 项目类别:
Standard Grant
CRCNS Research Proposal: A Unified Framework for Unsupervised Sparse-to-dense Brain Image Generation and Neural Circuit Reconstruction
CRCNS 研究提案:无监督稀疏到密集脑图像生成和神经回路重建的统一框架
- 批准号:
2309073 - 财政年份:2023
- 资助金额:
$ 119万 - 项目类别:
Continuing Grant
CRCNS US-France Research Proposal: Neural computations of adaptive temporal integration in auditory cortex
CRCNS 美国-法国研究提案:听觉皮层自适应时间整合的神经计算
- 批准号:
2308725 - 财政年份:2023
- 资助金额:
$ 119万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Novel computational approaches for neural speech prostheses and causal dynamics of language processing
CRCNS 研究提案:神经语音假体和语言处理因果动力学的新型计算方法
- 批准号:
2309057 - 财政年份:2023
- 资助金额:
$ 119万 - 项目类别:
Standard Grant
CRCNS US-German Research Proposal: Quantitative and Computational Dissection of Glutamatergic Crosstalk at Tripartite Synapses
CRCNS 美德研究提案:三方突触谷氨酸能串扰的定量和计算剖析
- 批准号:
10612169 - 财政年份:2023
- 资助金额:
$ 119万 - 项目类别:
CRCNS US-French Research Proposal: Impact of network state on corticocortical communication
CRCNS 美法研究提案:网络状态对皮质通讯的影响
- 批准号:
2207707 - 财政年份:2022
- 资助金额:
$ 119万 - 项目类别:
Standard Grant
CRCNS US-Spain Research Proposal: Collaborative Research: Tracking and modeling the neurobiology of multilingual speech recognition
CRCNS 美国-西班牙研究提案:合作研究:跟踪和建模多语言语音识别的神经生物学
- 批准号:
2207770 - 财政年份:2022
- 资助金额:
$ 119万 - 项目类别:
Continuing Grant
CRCNS US-German Research Proposal: Combining computational modeling and artificial intelligence to understand receptor function in physiology and disease
CRCNS 美德研究提案:结合计算模型和人工智能来了解生理学和疾病中的受体功能
- 批准号:
2113030 - 财政年份:2022
- 资助金额:
$ 119万 - 项目类别:
Standard Grant