Excellence in Research: Integrated Sensor-Robot Networks for Real-time Environmental Monitoring and Marine Ecosystem Restoration in the Hampton River

卓越的研究:用于汉普顿河实时环境监测和海洋生态系统恢复的集成传感器机器人网络

基本信息

  • 批准号:
    2101227
  • 负责人:
  • 金额:
    $ 60.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Estuaries are bodies of water where rivers meet the ocean. They are among the most productive environments on earth, creating more organic matter each year than forest and agricultural areas of similar sizes. Chesapeake Bay is the largest estuarine system in the United States, spanning over 64,000 square miles in six states (Virginia, Maryland, Delaware, West Virginia, Pennsylvania, and New York) and Washington DC. It plays a critical role in the region’s environment, food, economy, and recreation. Rapid industrialization and increased pollution caused by excessive nutrient offloading from industrial activities and agricultural runoff, as well as over fishing, are imposing severe threat to the marine ecosystem, wildlife fisheries, and oyster population in the Bay, and in the Hampton River, our study site. These critical environmental challenges call for advanced scientific methods and engineering solutions to fully understand the dynamic biochemical conditions of the water system where the marine ecosystem reside and grow so that effective decisions for resource management, wildlife protection, and ecosystem restoration can be made. This project aims to develop an integrated biochemical sensor-robot network, coupled with intelligent data sampling schemes, environmental modeling, and sensor-robot control methods, for real-time proactive environmental sensing and marine ecosystem restoration in the Hampton River, a tributary of the Chesapeake Bay.The research team will explore a joint design of static sensor networks and mobile aquatic robots to provide proactive biochemical sensing of the dynamic water condition at large scales in space and time. Specific research objectives include (1) biogeochemical sensor-robot network design, intelligent sampling, and data analysis; (2) machine learning methods and data-driven models for marine species density and growth estimation; (3) optimal navigation, path planning, and robust control of aquatic robots for effective mobile sensing; and (4) field deployment and performance evaluations. This project will develop and demonstrate a new and highly effective approach for large-scale proactive environmental sensing, providing critical data and models for informed decision making in pollution control, water system management, and marine ecosystem restoration in the Hampton River and Chesapeake Bay. This project serves the long-term goal of building the research capacity and increasing the number of students in STEM at Historically Black Colleges and Universities (HBCUs). Since Hampton University (HU) is a private HBCU, this project will provide unique and exciting opportunities for mentoring graduate and undergraduate students, in particular, students that are underrepresented in STEM, for research in an interdisciplinary environment. The research will provide valuable water quality, oyster growth and ecosystem restoration data, and information for peer researchers and the general public.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
河口是河流与海洋交汇的地方。它们是地球上最多产的环境之一,每年产生的有机物比同等面积的森林和农业区还要多。切萨皮克湾是美国最大的河口系统,横跨六个州(弗吉尼亚州、马里兰州、特拉华州、西弗吉尼亚州、宾夕法尼亚州和纽约州)和华盛顿特区,面积超过64,000平方英里。它在该地区的环境、食品、经济和娱乐方面发挥着至关重要的作用。快速的工业化和工业活动和农业径流造成的过量营养流失造成的污染加剧,以及过度捕捞,对海湾和汉普顿河(我们的研究地点)的海洋生态系统、野生动物渔业和牡蛎种群构成了严重威胁。这些严峻的环境挑战需要先进的科学方法和工程解决方案,以充分了解海洋生态系统所在的水系统的动态生化条件,以便为资源管理、野生动物保护和生态系统恢复做出有效的决策。本项目旨在开发一个集成的生化传感器-机器人网络,结合智能数据采样方案、环境建模和传感器-机器人控制方法,用于切萨皮克湾支流汉普顿河的实时主动环境传感和海洋生态系统恢复。研究团队将探索静态传感器网络与移动水生机器人的联合设计,在空间和时间的大尺度上提供动态水情的主动生化感知。具体研究目标包括:(1)生物地球化学传感器-机器人网络设计、智能采样和数据分析;(2)海洋物种密度和生长估计的机器学习方法和数据驱动模型;(3)水生机器人的最优导航、路径规划和鲁棒控制,以实现有效的移动传感;(4)现场部署与绩效评价。该项目将开发并展示一种新的高效方法,用于大规模的主动环境感知,为汉普顿河和切萨皮克湾的污染控制、水系统管理和海洋生态系统恢复的知情决策提供关键数据和模型。该项目服务于建立研究能力和增加传统黑人学院和大学(HBCUs) STEM学生数量的长期目标。由于汉普顿大学(HU)是一所私立HBCU,该项目将为指导研究生和本科生,特别是在STEM领域代表性不足的学生,在跨学科环境中进行研究提供独特而令人兴奋的机会。该研究将为同行研究人员和公众提供有价值的水质、牡蛎生长和生态系统恢复数据以及信息。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhao Sun其他文献

Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation
载体对甲烷化学循环制氢氧化铁还原活性和积炭的影响
  • DOI:
    10.1016/j.apenergy.2018.05.082
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Min Zhu;Shiyi Chen;Ahsanullah Soomro;Jun Hu;Zhao Sun;Shiwei Ma;Wenguo Xiang
  • 通讯作者:
    Wenguo Xiang
Hegyi competition index decomposition to improve estimation accuracy of Larix olgensis crown radius
Hegyi竞争指数分解提高长白落叶松树冠半径估算精度
  • DOI:
    10.1016/j.ecolind.2022.109322
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Zhao Sun;Yifu Wang;Lei Pan;Yujun Sun
  • 通讯作者:
    Yujun Sun
Process simulation and economic analysis of calcium looping gasification for coal to synthetic natural gas
煤钙循环气化制合成天然气工艺模拟及经济分析
  • DOI:
    10.1016/j.fuproc.2021.106835
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Di Wei;Zekun Jia;Zhao Sun;Yanxiu Gao;Guoqing Wang;Liang Zeng
  • 通讯作者:
    Liang Zeng
Silyllithium-initiated coupling of α-ketoamides with tert-butanesulfinylimines for stereoselective synthesis of enantioenriched α-(silyloxy)-β-amino amides
甲硅烷基锂引发的 α-酮酰胺与叔丁烷亚磺酰亚胺的偶联,用于立体选择性合成对映体富集的 α-(甲硅烷氧基)-β-氨基酰胺
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhao Sun;Hui Liu;Yong-Ming Zeng;Chong-Dao Lu;Yan-Jun Xu
  • 通讯作者:
    Yan-Jun Xu
Quality Varies Across Health Insurance Marketplace Pricing Regions
不同健康保险市场定价区域的质量各不相同
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3
  • 作者:
    C. MacLean;Eric Marnoch;Zhao Sun;Jennifer Curtis;J. Burmeister;E. Anum;M. Belman;S. Nussbaum
  • 通讯作者:
    S. Nussbaum

Zhao Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 60.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 60.02万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 60.02万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 60.02万
  • 项目类别:
    Standard Grant
Seaconomy: Integrated Manufacturing and Biorefinery Research for Building the UK's Seaweed Bioeconomy
Seaconomy:构建英国海藻生物经济的集成制造和生物精炼研究
  • 批准号:
    MR/X036812/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.02万
  • 项目类别:
    Fellowship
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332661
  • 财政年份:
    2024
  • 资助金额:
    $ 60.02万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 60.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331295
  • 财政年份:
    2024
  • 资助金额:
    $ 60.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331296
  • 财政年份:
    2024
  • 资助金额:
    $ 60.02万
  • 项目类别:
    Standard Grant
CAREER: An Integrated Trustworthy AI Research and Education Framework for Modeling Human Behavior in Climate Disasters
职业生涯:用于模拟气候灾害中人类行为的综合可信人工智能研究和教育框架
  • 批准号:
    2338959
  • 财政年份:
    2024
  • 资助金额:
    $ 60.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了