Collaborative Research: Toric Geometry, Tropical Geometry, and Combinatorial Buildings
合作研究:环面几何、热带几何和组合建筑
基本信息
- 批准号:2101843
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project involves research at the intersection of algebraic geometry and combinatorics. Algebraic geometry is the study of solution sets of polynomial equations called algebraic varieties. It has applications in many fields as diverse as high energy physics, coding, cryptography, and mathematical biology. Understanding how the shape of the solution set changes as the coefficients are varied is one of the oldest and central questions in the field. Such continuous deformations, which appear in all branches of algebraic geometry and its applications, are called algebraic families. An important example is the geometric Langlands program, which is concerned with understanding principal bundles on curves, a very special class of families. Bundles are also main players in gauge theory in high energy physics. Algebraic families are the central focus of this project. The research aims to introduce new methods to classify and compute with algebraic families. The project will provide research training opportunities for graduate students.Toric varieties are a large class of varieties whose geometry is intimately connected with combinatorics of convex lattice polytopes. They play a central role in contemporary algebraic geometry. Tropical geometry, a relatively recent area of research, concerns study of piecewise linear geometry and has roots in convex optimization. Tropical geometry translates numerous questions in algebra and geometry into combinatorial and convex geometric questions that are often more tractable. The theory of buildings is an area of combinatorial geometry that has deep connections with topology and differential geometry. It aims to unravel hidden combinatorial geometric structures in matrix groups and related spaces. The topics of this research revolve around the common theme of studying families of algebraic varieties over a toric variety, or a toric family for short. The main insight is that the combinatorics needed to understand toric families comes from both tropical geometry and the theory of buildings. The approach followed in this project will lead to the development of new techniques in algebraic geometry and related fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及代数几何和组合学的交叉研究。代数几何是研究称为代数簇的多项式方程的解集的学科。它在许多领域都有应用,包括高能物理、编码、密码学和数学生物学。了解解集的形状如何随着系数的变化而变化是该领域最古老和最核心的问题之一。这种连续变形出现在代数几何及其应用的所有分支中,称为代数族。一个重要的例子是几何朗兰兹程序,它涉及到理解曲线上的主丛,这是一类非常特殊的族。束团也是高能物理规范理论的主要参与者。代数族是这个项目的中心焦点。本研究旨在引入新的代数族分类和计算方法。该项目将为研究生提供科研培训机会。环型变种是一大类变型,其几何与凸格型多面体的组合学密切相关。它们在当代代数几何中起着核心作用。热带几何是一个相对较新的研究领域,它涉及分段线性几何的研究,并植根于凸优化。热带几何将代数和几何中的许多问题转化为组合和凸几何问题,这些问题往往更容易处理。建筑理论是一个与拓扑学和微分几何有着深刻联系的组合几何领域。它的目的是揭示矩阵群和相关空间中隐藏的组合几何结构。这项研究的主题围绕着一个共同的主题,即研究环簇上的代数簇族,或简称环簇。主要的见解是,理解环面族所需的组合学既来自热带几何,也来自建筑理论。在这个项目中遵循的方法将导致代数几何和相关领域的新技术的发展。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toric principal bundles, piecewise linear maps and Tits buildings
环面主丛、分段线性映射和 Tits 建筑物
- DOI:10.1007/s00209-022-03094-5
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Kaveh, Kiumars;Manon, Christopher
- 通讯作者:Manon, Christopher
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kiumars Kaveh其他文献
A REMARK ON ASYMPTOTIC OF HIGHEST WEIGHTS IN TENSOR POWERS OF A REPRESENTATION
一种表示法张量幂最高权渐近性的讨论
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Kiumars Kaveh - 通讯作者:
Kiumars Kaveh
Note on the Grothendieck group of subspaces of rational functions and Shokurov's b-divisors
关于有理函数子空间的 Grothendieck 群和 Shokurov 的 b-除数的注记
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kiumars Kaveh;A. Khovanskii - 通讯作者:
A. Khovanskii
Note on the Cohomology Ring of Spherical Varieties and Volume Polynomial
关于球簇和体积多项式的上同调环的注记
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Kiumars Kaveh - 通讯作者:
Kiumars Kaveh
On the Equivariant Cohomology of Subvarieties of a
关于a的子族的等变上同调
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
J. Carrell;Kiumars Kaveh - 通讯作者:
Kiumars Kaveh
Cohomology ring of the flag variety vs Chow cohomology ring of the Gelfand–Zetlin toric variety
Flag 簇的上同调环与 Gelfand-Zetlin 复曲面簇的 Chow 上同调环
- DOI:
10.4171/jca/56 - 发表时间:
2019 - 期刊:
- 影响因子:0.9
- 作者:
Kiumars Kaveh;Elise Villella - 通讯作者:
Elise Villella
Kiumars Kaveh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kiumars Kaveh', 18)}}的其他基金
Convex Bodies, Algebraic Geometry, and Symplectic Geometry
凸体、代数几何和辛几何
- 批准号:
1601303 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Convex Bodies in Algebraic Geometry and Representation Theory
代数几何和表示论中的凸体
- 批准号:
1200581 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
- 批准号:
EP/Y031962/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
- 批准号:
EP/Y033124/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
- 批准号:
NE/Y005457/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Training Grant