Higher Depth in Representation Theory, Number Theory, and Quantum Topology
更深入的表示论、数论和量子拓扑
基本信息
- 批准号:2101844
- 负责人:
- 金额:$ 35.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Representation theory is the study of symmetries of algebraic objects by means of linear algebra. Modular forms are important special functions defined on the upper half-plane that obey certain transformation properties. They are extensively used in number theory to derive interesting arithmetic relations. Quantum topology is a branch of mathematics that connects ideas of quantum field theory with low-dimensional topology. This research project lies at the interface of these areas and is concerned with properties of several types of partition or counting functions. A primary aim of the project is to develop new tools for studying their arithmetic properties and analytic behaviors and use them to solve concrete problems. The techniques in play are of interest to a broad range of mathematicians and theoretical physicists. In addition to research, this project will also support training of graduate students.In more technical terms, this project will deepen our understanding of characters of representation of vertex algebras, specifically those exhibiting "higher depth" phenomena. For this purpose the PI will introduce and study higher depth false modular forms and higher depth quantum modular forms. These are generalizations of quantum modular forms (after Zagier) and closely related higher depth mock modular forms. The PI will investigate coefficients of meromorphic Jacobi forms in several variables and their Fourier coefficients, generalizing the existing results for a single variable. In quantum topology, the PI will further investigate properties of "homological blocks" (or Z-hat invariants) of Gukov, Pei, Putrov and Vafa. In particular, the PI will study Gukov's conjecture on higher depth quantum modularity of Z-hat invariants of plumbed 3-manifolds. In a different direction, also motivated by physics, the PI will prove rigorous formulas for Schur's indices of certain 4d N=2 SCFTs inspired by counting formulas for BPS particles on the Coulomb branch. Related methods will be applied to problems in algebraic geometry pertaining to Hilbert-Poincare series of certain arc spaces. Other directions include W-algebras for Argyres-Douglas theories, principal subspaces, parafermionic vertex algebras, and permutation orbifolds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
表示论是借助于线性代数来研究代数对象的对称性的理论。模形式是定义在上半平面上的重要的特殊函数,它服从一定的变换性质。它们在数论中被广泛使用,以推导出有趣的算术关系。量子拓扑学是将量子场论的思想与低维拓扑学联系起来的数学分支。这个研究项目位于这些区域的交界处,并且涉及几种类型的分拆或计数函数的性质。该项目的一个主要目标是开发新的工具来研究它们的算术性质和分析行为,并使用它们来解决具体问题。许多数学家和理论物理学家都对游戏中的技术感兴趣。除了研究之外,这个项目还将支持研究生的培养。用更专业的术语来说,这个项目将加深我们对顶点代数表示特征的理解,特别是那些表现出更高深度现象的顶点代数。为此,PI将引入和研究更高深度的伪模形式和更高深度的量子模形式。这些是量子模形式(在Zagier之后)和密切相关的更高深度的模拟模形式的推广。PI将研究多个变量的亚纯Jacobi形式的系数及其傅立叶系数,推广了现有的关于单个变量的结果。在量子拓扑学中,PI将进一步研究Gukov,Pei,Putrov和Vafa的“同调块”(或Z-Hat不变量)的性质。特别是,PI将研究Gukov关于垂直型3-流形的Z-hat不变量的更高深度量子模数的猜想。在另一个方向上,也是受物理学的启发,PI将证明某些4dN=2 SCFT的Schur指数的严格公式,灵感来自于库仑分支上BPS粒子的计数公式。相关方法将应用于某些弧空间的Hilbert-Poincare级数的代数几何问题。其他方向包括Argyres-Douglas理论的W-代数、主子空间、准费米子顶点代数和置换奥比霍尔德。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integral representations of rank two false theta functions and their modularity properties
- DOI:10.1007/s40687-021-00284-1
- 发表时间:2021-01
- 期刊:
- 影响因子:1.2
- 作者:K. Bringmann;Jonas Kaszian;A. Milas;Caner Nazaroglu
- 通讯作者:K. Bringmann;Jonas Kaszian;A. Milas;Caner Nazaroglu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Antun Milas其他文献
Lattice construction of logarithmic modules for certain vertex algebras
- DOI:
10.1007/s00029-009-0009-z - 发表时间:
2009-10-08 - 期刊:
- 影响因子:1.200
- 作者:
Dražen Adamović;Antun Milas - 通讯作者:
Antun Milas
Antun Milas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Antun Milas', 18)}}的其他基金
Irrational Vertex Algebras, Quantum Modular Forms, and Unrolled Quantum Groups
无理顶点代数、量子模形式和展开的量子群
- 批准号:
1601070 - 财政年份:2016
- 资助金额:
$ 35.9万 - 项目类别:
Standard Grant
US Participation in Conference "Representation Theory 2013"
美国参加“表征理论2013”会议
- 批准号:
1301875 - 财政年份:2013
- 资助金额:
$ 35.9万 - 项目类别:
Standard Grant
Algebraic and Number Theoretic Aspects of Vertex Algebra Theory
顶点代数理论的代数和数论方面
- 批准号:
0802962 - 财政年份:2008
- 资助金额:
$ 35.9万 - 项目类别:
Standard Grant
相似海外基金
Statistical Representation of Internal States of Depth Neural Networks and Exploration of New Learning Methods
深度神经网络内部状态的统计表示及新学习方法的探索
- 批准号:
18K11449 - 财政年份:2018
- 资助金额:
$ 35.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The historical development of depth representation in the Northern and Southern Dynasties paintings -- in the context of human representation
南北朝绘画深度再现的历史发展——以人物再现为背景
- 批准号:
15K02151 - 财政年份:2015
- 资助金额:
$ 35.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quality assessment of 3D volume representation of 2D depth stack digital pathology images through advanced post-processing and quantitative analysis
通过先进的后处理和定量分析对 2D 深度叠加数字病理图像的 3D 体积表示进行质量评估
- 批准号:
485010-2015 - 财政年份:2015
- 资助金额:
$ 35.9万 - 项目类别:
Engage Grants Program
HCC: Small: Effective Augmented Reality Depth Representation Methods and Accuracy Evaluations Inspired by Medical Applications
HCC:小型:受医学应用启发的有效增强现实深度表示方法和准确性评估
- 批准号:
1320909 - 财政年份:2013
- 资助金额:
$ 35.9万 - 项目类别:
Continuing Grant
REPRESENTATION OF DEPTH BY THE MACAQUE VISUAL CORTEX
猕猴视觉皮层对深度的表示
- 批准号:
3039241 - 财政年份:1992
- 资助金额:
$ 35.9万 - 项目类别:
REPRESENTATION OF DEPTH BY THE MACAQUE VISUAL CORTEX
猕猴视觉皮层对深度的表示
- 批准号:
3039240 - 财政年份:1991
- 资助金额:
$ 35.9万 - 项目类别:
REPRESENTATION OF DEPTH BY THE MACAQUE VISUAL CORTEX
猕猴视觉皮层对深度的表示
- 批准号:
3039239 - 财政年份:1990
- 资助金额:
$ 35.9万 - 项目类别:














{{item.name}}会员




