Algebraic and Number Theoretic Aspects of Vertex Algebra Theory
顶点代数理论的代数和数论方面
基本信息
- 批准号:0802962
- 负责人:
- 金额:$ 8.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Three projects are being proposed. In the first part the PI will pursue a new direction in representation theory of vertex algebras, by studying(new) families of vertex algebras of finite representation type, which involve both indecomposable and logarithmic modules. It is expected that categories of modules obtained in this way are equivalent to categories of modules for certain quantum (super)groups at root of unity. In addition, an extension of this project to the setup of vertex superalgebras will be obtained. The structures investigated in this part are basic ingredients for building logarithmic conformal field theories, increasingly popular among physicists. The second part involves studies of characters of vertex algebra modules, closely related pseudocharacters and modular differential equations. From these considerations the PI proposes a whole array of results of interest to number theorists, including constant term identities and modular identities. Finally, the PI, jointly with his collaborators, will continue to work on combinatorial aspects of vertex algebra theory. In particular, considerable attention will be devoted to "principal subspaces" of standard modules for affine Lie algebras, by using primarily the theory of intertwining operators. It is expected that this will lead to new combinatorial bases of standard modules.Conformal field theory and string theory have had major impact on modern mathematics. Two-dimensional conformal field theory has also important applications in condensed mater physics and statistical mechanics. The aim of this research is to use symmetries in physical theories (through the language of representation theory) to study analytic and combinatorial properties of correlation functions and partition functions. This will, on one hand, advance our understanding of processes in nature and, on the other, lead to new results and structures in mathematics.
目前正在提出三个项目。在第一部分PI将追求一个新的方向表示理论的顶点代数,通过研究(新)家庭的顶点代数有限表示类型,其中涉及不可分解和对数模块。 可以预期,以这种方式得到的模的范畴等价于在单位根上的某些量子(超)群的模的范畴。 此外,将这个项目扩展到顶点超代数的建立。在这一部分中研究的结构是建立对数共形场论的基本成分,在物理学家中越来越受欢迎。第二部分研究了顶点代数模的特征标、与其密切相关的伪特征标和模微分方程。从这些考虑出发,PI提出了一系列数论家感兴趣的结果,包括常项恒等式和模恒等式。 最后,PI与他的合作者将继续致力于顶点代数理论的组合方面。特别是,相当多的注意力将致力于“主子空间”的标准模仿射李代数,主要是使用理论的交织算子。共形场论和弦论对现代数学产生了重大影响。二维共形场论在凝聚态物理和统计力学中也有重要的应用。 本研究的目的是使用物理理论中的对称性(通过表示论的语言)来研究相关函数和配分函数的分析和组合性质。这一方面将促进我们对自然过程的理解,另一方面将导致数学的新结果和新结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Antun Milas其他文献
Lattice construction of logarithmic modules for certain vertex algebras
- DOI:
10.1007/s00029-009-0009-z - 发表时间:
2009-10-08 - 期刊:
- 影响因子:1.200
- 作者:
Dražen Adamović;Antun Milas - 通讯作者:
Antun Milas
Antun Milas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Antun Milas', 18)}}的其他基金
Higher Depth in Representation Theory, Number Theory, and Quantum Topology
更深入的表示论、数论和量子拓扑
- 批准号:
2101844 - 财政年份:2021
- 资助金额:
$ 8.56万 - 项目类别:
Continuing Grant
Irrational Vertex Algebras, Quantum Modular Forms, and Unrolled Quantum Groups
无理顶点代数、量子模形式和展开的量子群
- 批准号:
1601070 - 财政年份:2016
- 资助金额:
$ 8.56万 - 项目类别:
Standard Grant
US Participation in Conference "Representation Theory 2013"
美国参加“表征理论2013”会议
- 批准号:
1301875 - 财政年份:2013
- 资助金额:
$ 8.56万 - 项目类别:
Standard Grant
相似国自然基金
关于群上的短零和序列及其cross number的研究
- 批准号:11501561
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2021
- 资助金额:
$ 8.56万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2020
- 资助金额:
$ 8.56万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2019
- 资助金额:
$ 8.56万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
507937-2017 - 财政年份:2019
- 资助金额:
$ 8.56万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2018
- 资助金额:
$ 8.56万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
507937-2017 - 财政年份:2018
- 资助金额:
$ 8.56万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
507937-2017 - 财政年份:2017
- 资助金额:
$ 8.56万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Families of algebraic curves with CM, multiple gamma functions, Stark conjecture and related number-theoretic problems
CM 代数曲线族、多重伽玛函数、斯塔克猜想和相关数论问题
- 批准号:
17K05183 - 财政年份:2017
- 资助金额:
$ 8.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2017
- 资助金额:
$ 8.56万 - 项目类别:
Discovery Grants Program - Individual
Research on ideal class groups of algebraic number fields and number theoretic functions and its applications
代数数域和数论函数的理想类群研究及其应用
- 批准号:
16540007 - 财政年份:2004
- 资助金额:
$ 8.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)