Collaborative Research: Visible-Light-Augmented Reverse Water Gas Shift Reaction on Hybrid Plasmonic Photocatalysts
合作研究:混合等离子体光催化剂上的可见光增强反向水煤气变换反应
基本信息
- 批准号:2102238
- 负责人:
- 金额:$ 24.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Photocatalysis is an attractive technology for the sustainable, solar-driven chemical conversion of greenhouse gases, such as carbon dioxide, to value-added fuels and chemicals. To this end, the project explores the selective photocatalytic reduction of carbon dioxide by hydrogen into carbon monoxide and water. This reaction is also known as the reverse water-gas shift reaction (RWGS). The carbon monoxide product can be further transformed into a range of high-value chemicals and fuels. Among the earth-abundant metal and metal oxide materials that can serve as a catalyst for this reaction, copper-based nanocatalysts have emerged as one of the best candidates for the RWGS reaction. However, under conventional thermal energy-driven catalytic conditions, the copper nanocatalysts require relatively high operating reaction temperatures and suffer from less than desirable product selectivity. This research project aims to develop a novel photocatalytic approach to achieving superior catalytic activity and desired-product selectivity for the RWGS reaction. The project also demonstrates sustainable energy concepts to local elementary and high school students through various outreach activities, including Chemkidz events at schools across Oklahoma, Summer Science Camp in Appalachia (West Virginia), and National Lab Day events at the Oklahoma State University and West Virginia University campuses.In conventional catalytic processes, the dissipation of thermal energy drives the transformation of reactants on the surface of catalysts toward a variety of products. Challenges remain, however, for designing catalysts that can drive the breakage and formation of specific chemical bonds toward desirable products with the utmost selectivity. This research project develops a hybrid plasmonic photocatalytic approach for this purpose. Hybrid plasmonic photocatalysts consist of light-absorbing plasmonic metals surrounded by catalytic metals or metal oxides. The hybrid plasmonic photocatalytic approach offers a unique opportunity to control catalytic activity and selectivity using photon stimuli as an additional degree of freedom. In hybrid plasmonic photocatalysts, such as Cu core/Cu2O shell, the electron transfer from the Cu core to the Cu2O shell can occur by Landau damping-mediated hot-electron-transfer pathway or by chemical interface damping (CID). Although a fundamental understanding of the Landau damping-mediated hot-electron-transfer pathway is well established, design rules for the chemical interface damping pathway remain unknown. This collaborative project will develop design rules for chemical interface damping-induced electron-driven photochemistry. These rules will then be applied to the design of core/shell, Cu/Cu2O and Ag/Cu2O photocatalysts for the RWGS reaction. This research project also aims to distinguish the role of chemical interface damping- and Landau damping-mediated electron-transfer pathways in hybrid plasmonic photocatalysts using photocatalytic rate and quantum efficiency measurements and in-situ femtosecond transient-absorption spectroscopy. It is hypothesized that the chemical interface damping pathway will exhibit higher quantum efficiency and minimal local heating effects compared to the Landau damping pathway. Also, beyond the focus on Cu/Cu2O and Ag/Cu2O core/shell photocatalysts for the RWGS reaction, the design rules developed in this project can be applied to a wide range of other hybrid plasmonic nanostructures for photocatalytic and photovoltaic applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光催化是一项有吸引力的技术,它将温室气体(如二氧化碳)可持续地、由太阳能驱动的化学转化为增值的燃料和化学品。为此,该项目探索了氢选择性光催化将二氧化碳还原为一氧化碳和水的方法。这个反应也被称为逆水气转换反应(RWGS)。一氧化碳产品可以进一步转化为一系列高价值的化学品和燃料。在地球上丰富的金属和金属氧化物材料中,铜基纳米催化剂已成为RWGS反应的最佳候选材料之一。然而,在传统的热能驱动催化条件下,铜纳米催化剂需要相对较高的操作反应温度,并且产物选择性不理想。本研究项目旨在开发一种新的光催化方法,以实现RWGS反应的优异催化活性和理想的产物选择性。该项目还通过各种外展活动向当地中小学生展示可持续能源概念,包括在俄克拉荷马州各学校举办的Chemkidz活动,在阿巴拉契亚(西弗吉尼亚州)举办的暑期科学营,以及在俄克拉荷马州立大学和西弗吉尼亚大学校园举办的国家实验室日活动。在传统的催化过程中,热能的耗散驱动催化剂表面的反应物向多种产物转化。然而,要设计出能够以最大的选择性驱使特定化学键断裂和形成的催化剂,挑战依然存在。本研究项目为此目的开发了一种混合等离子体光催化方法。杂化等离子体光催化剂由被催化金属或金属氧化物包围的吸光等离子体金属组成。混合等离子体光催化方法提供了一个独特的机会来控制催化活性和选择性使用光子刺激作为一个额外的自由度。在Cu核/Cu2O壳层等杂化等离子体光催化剂中,电子从Cu核向Cu2O壳层的转移可以通过朗道阻尼介导的热电子转移途径或化学界面阻尼(CID)途径进行。虽然对朗道阻尼介导的热电子传递途径的基本理解已经建立,但化学界面阻尼途径的设计规则仍然未知。该合作项目将开发化学界面阻尼诱导电子驱动光化学的设计规则。然后将这些规则应用于RWGS反应的核/壳、Cu/Cu2O和Ag/Cu2O光催化剂的设计。本研究项目还旨在通过光催化速率和量子效率测量以及原位飞秒瞬态吸收光谱来区分混合等离子体光催化剂中化学界面阻尼和朗道阻尼介导的电子转移途径的作用。假设与朗道阻尼途径相比,化学界面阻尼途径具有更高的量子效率和最小的局部热效应。此外,除了关注用于RWGS反应的Cu/Cu2O和Ag/Cu2O核/壳光催化剂外,本项目开发的设计规则还可以广泛应用于光催化和光伏应用的其他混合等离子体纳米结构。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marimuthu Andiappan其他文献
Marimuthu Andiappan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marimuthu Andiappan', 18)}}的其他基金
CAREER: CAS-Climate: Structure-Property-Performance Relationships of Iron- and Copper-Based Hybrid Mie-Resonator Photocatalysts for C-C and C-N Coupling Reactions
职业:CAS-气候:用于 C-C 和 C-N 偶联反应的铁基和铜基混合米氏谐振器光催化剂的结构-性能-性能关系
- 批准号:
2237454 - 财政年份:2023
- 资助金额:
$ 24.17万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Catalyst Free Activation of Peroxydisulfate under Visible Light to Degrade Contaminants in Water: Elucidation of Kinetics and Mechanism
合作研究:可见光下无催化剂活化过二硫酸盐降解水中污染物:阐明动力学和机制
- 批准号:
2314719 - 财政年份:2023
- 资助金额:
$ 24.17万 - 项目类别:
Standard Grant
Collaborative Research: Catalyst Free Activation of Peroxydisulfate under Visible Light to Degrade Contaminants in Water: Elucidation of Kinetics and Mechanism
合作研究:可见光下无催化剂活化过二硫酸盐降解水中污染物:阐明动力学和机制
- 批准号:
2314720 - 财政年份:2023
- 资助金额:
$ 24.17万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Visible Reflectivity of Jupiter and Saturn. Implications for Giant Planets' Thermal Evolution.
合作研究:RUI:木星和土星的可见反射率。
- 批准号:
2108017 - 财政年份:2021
- 资助金额:
$ 24.17万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: Planning: A Visible Light Communication (VLC) Testbed for Next Generation Wireless Research
合作研究:CCRI:规划:下一代无线研究的可见光通信 (VLC) 测试平台
- 批准号:
2120421 - 财政年份:2021
- 资助金额:
$ 24.17万 - 项目类别:
Standard Grant
Collaborative Research: Visible-Light-Augmented Reverse Water Gas Shift Reaction on Hybrid Plasmonic Photocatalysts
合作研究:混合等离子体光催化剂上的可见光增强反向水煤气变换反应
- 批准号:
2102239 - 财政年份:2021
- 资助金额:
$ 24.17万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: Planning: A Visible Light Communication (VLC) Testbed for Next Generation Wireless Research
合作研究:CCRI:规划:下一代无线研究的可见光通信 (VLC) 测试平台
- 批准号:
2120422 - 财政年份:2021
- 资助金额:
$ 24.17万 - 项目类别:
Standard Grant
Collaborative Research: Visible Reflectivity of Jupiter and Saturn. Implications for Giant Planets Thermal Evolution
合作研究:木星和土星的可见反射率。
- 批准号:
2108018 - 财政年份:2021
- 资助金额:
$ 24.17万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Making Information Deserts Visible: computational models, disparities in civic technology use, and urban decision making
CHS:小型:协作研究:使信息沙漠可见:计算模型、公民技术使用的差异和城市决策
- 批准号:
1816080 - 财政年份:2018
- 资助金额:
$ 24.17万 - 项目类别:
Continuing Grant
CHS: Small: Collaborative Research: Making Information Deserts Visible: computational models, disparities in civic technology use, and urban decision making
CHS:小型:协作研究:使信息沙漠可见:计算模型、公民技术使用的差异和城市决策
- 批准号:
1815310 - 财政年份:2018
- 资助金额:
$ 24.17万 - 项目类别:
Continuing Grant
CHS: Small: Collaborative Research: Making Information Deserts Visible: Computational Models, Disparities in Civic Technology Use, and Urban Decision Making
CHS:小型:协作研究:使信息沙漠可见:计算模型、公民技术使用的差异和城市决策
- 批准号:
1816763 - 财政年份:2018
- 资助金额:
$ 24.17万 - 项目类别:
Continuing Grant