Collaborative Research: Visible-Light-Augmented Reverse Water Gas Shift Reaction on Hybrid Plasmonic Photocatalysts

合作研究:混合等离子体光催化剂上的可见光增强反向水煤气变换反应

基本信息

项目摘要

Photocatalysis is an attractive technology for the sustainable, solar-driven chemical conversion of greenhouse gases, such as carbon dioxide, to value-added fuels and chemicals. To this end, the project explores the selective photocatalytic reduction of carbon dioxide by hydrogen into carbon monoxide and water. This reaction is also known as the reverse water-gas shift reaction (RWGS). The carbon monoxide product can be further transformed into a range of high-value chemicals and fuels. Among the earth-abundant metal and metal oxide materials that can serve as a catalyst for this reaction, copper-based nanocatalysts have emerged as one of the best candidates for the RWGS reaction. However, under conventional thermal energy-driven catalytic conditions, the copper nanocatalysts require relatively high operating reaction temperatures and suffer from less than desirable product selectivity. This research project aims to develop a novel photocatalytic approach to achieving superior catalytic activity and desired-product selectivity for the RWGS reaction. The project also demonstrates sustainable energy concepts to local elementary and high school students through various outreach activities, including Chemkidz events at schools across Oklahoma, Summer Science Camp in Appalachia (West Virginia), and National Lab Day events at the Oklahoma State University and West Virginia University campuses.In conventional catalytic processes, the dissipation of thermal energy drives the transformation of reactants on the surface of catalysts toward a variety of products. Challenges remain, however, for designing catalysts that can drive the breakage and formation of specific chemical bonds toward desirable products with the utmost selectivity. This research project develops a hybrid plasmonic photocatalytic approach for this purpose. Hybrid plasmonic photocatalysts consist of light-absorbing plasmonic metals surrounded by catalytic metals or metal oxides. The hybrid plasmonic photocatalytic approach offers a unique opportunity to control catalytic activity and selectivity using photon stimuli as an additional degree of freedom. In hybrid plasmonic photocatalysts, such as Cu core/Cu2O shell, the electron transfer from the Cu core to the Cu2O shell can occur by Landau damping-mediated hot-electron-transfer pathway or by chemical interface damping (CID). Although a fundamental understanding of the Landau damping-mediated hot-electron-transfer pathway is well established, design rules for the chemical interface damping pathway remain unknown. This collaborative project will develop design rules for chemical interface damping-induced electron-driven photochemistry. These rules will then be applied to the design of core/shell, Cu/Cu2O and Ag/Cu2O photocatalysts for the RWGS reaction. This research project also aims to distinguish the role of chemical interface damping- and Landau damping-mediated electron-transfer pathways in hybrid plasmonic photocatalysts using photocatalytic rate and quantum efficiency measurements and in-situ femtosecond transient-absorption spectroscopy. It is hypothesized that the chemical interface damping pathway will exhibit higher quantum efficiency and minimal local heating effects compared to the Landau damping pathway. Also, beyond the focus on Cu/Cu2O and Ag/Cu2O core/shell photocatalysts for the RWGS reaction, the design rules developed in this project can be applied to a wide range of other hybrid plasmonic nanostructures for photocatalytic and photovoltaic applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光催化是一种有吸引力的技术,用于可持续的,太阳能驱动的化学转化温室气体,如二氧化碳,增值燃料和化学品。为此,该项目探索了通过氢气将二氧化碳选择性光催化还原为一氧化碳和水。 该反应也被称为逆水煤气变换反应(RWGS)。一氧化碳产品可以进一步转化为一系列高价值的化学品和燃料。在地球上丰富的金属和金属氧化物材料,可以作为该反应的催化剂,铜基纳米催化剂已成为RWGS反应的最佳候选人之一。然而,在常规的热能驱动的催化条件下,铜纳米催化剂需要相对高的操作反应温度,并且具有低于期望的产物选择性。本研究计划旨在开发一种新型的光催化方法,以实现RWGS反应的上级催化活性和目标产物选择性。该项目还通过各种外展活动向当地小学和高中学生展示可持续能源概念,包括在俄克拉荷马州的学校举办Chemkidz活动,在阿巴拉契亚举办夏季科学营(西弗吉尼亚州),以及在俄克拉荷马州州立大学和西弗吉尼亚大学校园举行的国家实验室日活动。在常规催化工艺中,热能的耗散驱动催化剂表面上的反应物向多种产物转化。然而,设计催化剂的挑战仍然存在,这些催化剂可以驱动特定化学键的断裂和形成,从而以最大的选择性获得所需的产物。本研究项目为此目的开发了一种混合等离子体光催化方法。混合等离子体光催化剂由被催化金属或金属氧化物包围的光吸收等离子体金属组成。混合等离子体激元光催化方法提供了一个独特的机会,使用光子刺激作为额外的自由度来控制催化活性和选择性。在杂化等离子体光催化剂中,如Cu核/Cu2O壳,电子从Cu核到Cu2O壳的转移可以通过朗道阻尼介导的热电子转移途径或通过化学界面阻尼(CID)进行。虽然朗道阻尼介导的热电子转移途径的基本理解是建立良好的,化学界面阻尼途径的设计规则仍然未知。这个合作项目将开发化学界面阻尼诱导的电子驱动光化学的设计规则。 这些规则将被应用到核/壳,Cu/Cu2O和Ag/Cu2O的RWGS反应的光催化剂的设计。该研究项目还旨在使用光催化速率和量子效率测量以及原位飞秒瞬态吸收光谱来区分化学界面阻尼和朗道阻尼介导的电子转移途径在混合等离子体光催化剂中的作用。据推测,化学界面阻尼路径将表现出更高的量子效率和最小的局部加热效应相比,朗道阻尼路径。此外,除了专注于用于RWGS反应的Cu/Cu2O和Ag/Cu2O核/壳光催化剂之外,该项目中开发的设计规则可以应用于光催化和光伏应用的各种其他混合等离子体纳米结构。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Bristow其他文献

Alan Bristow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Catalyst Free Activation of Peroxydisulfate under Visible Light to Degrade Contaminants in Water: Elucidation of Kinetics and Mechanism
合作研究:可见光下无催化剂活化过二硫酸盐降解水中污染物:阐明动力学和机制
  • 批准号:
    2314719
  • 财政年份:
    2023
  • 资助金额:
    $ 23.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Catalyst Free Activation of Peroxydisulfate under Visible Light to Degrade Contaminants in Water: Elucidation of Kinetics and Mechanism
合作研究:可见光下无催化剂活化过二硫酸盐降解水中污染物:阐明动力学和机制
  • 批准号:
    2314720
  • 财政年份:
    2023
  • 资助金额:
    $ 23.69万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Visible Reflectivity of Jupiter and Saturn. Implications for Giant Planets' Thermal Evolution.
合作研究:RUI:木星和土星的可见反射率。
  • 批准号:
    2108017
  • 财政年份:
    2021
  • 资助金额:
    $ 23.69万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: Planning: A Visible Light Communication (VLC) Testbed for Next Generation Wireless Research
合作研究:CCRI:规划:下一代无线研究的可见光通信 (VLC) 测试平台
  • 批准号:
    2120421
  • 财政年份:
    2021
  • 资助金额:
    $ 23.69万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: Planning: A Visible Light Communication (VLC) Testbed for Next Generation Wireless Research
合作研究:CCRI:规划:下一代无线研究的可见光通信 (VLC) 测试平台
  • 批准号:
    2120422
  • 财政年份:
    2021
  • 资助金额:
    $ 23.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Visible-Light-Augmented Reverse Water Gas Shift Reaction on Hybrid Plasmonic Photocatalysts
合作研究:混合等离子体光催化剂上的可见光增强反向水煤气变换反应
  • 批准号:
    2102238
  • 财政年份:
    2021
  • 资助金额:
    $ 23.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Visible Reflectivity of Jupiter and Saturn. Implications for Giant Planets Thermal Evolution
合作研究:木星和土星的可见反射率。
  • 批准号:
    2108018
  • 财政年份:
    2021
  • 资助金额:
    $ 23.69万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: Making Information Deserts Visible: computational models, disparities in civic technology use, and urban decision making
CHS:小型:协作研究:使信息沙漠可见:计算模型、公民技术使用的差异和城市决策
  • 批准号:
    1816080
  • 财政年份:
    2018
  • 资助金额:
    $ 23.69万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research: Making Information Deserts Visible: computational models, disparities in civic technology use, and urban decision making
CHS:小型:协作研究:使信息沙漠可见:计算模型、公民技术使用的差异和城市决策
  • 批准号:
    1815310
  • 财政年份:
    2018
  • 资助金额:
    $ 23.69万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research: Making Information Deserts Visible: Computational Models, Disparities in Civic Technology Use, and Urban Decision Making
CHS:小型:协作研究:使信息沙漠可见:计算模型、公民技术使用的差异和城市决策
  • 批准号:
    1816763
  • 财政年份:
    2018
  • 资助金额:
    $ 23.69万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了