NSF-BSF:Fluid-fluid interfaces with diminished surface tension and giant thermal and quantum fluctuations as novel materials for ultrasoft photonics

NSF-BSF:具有减小的表面张力以及巨大的热和量子波动的流体界面作为超软光子学的新型材料

基本信息

  • 批准号:
    2102249
  • 负责人:
  • 金额:
    $ 28.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Nontechnical abstractThe behavior of materials under extreme conditions is often where new fundamental discoveries are made and new applications are developed. The authors of this project study the behavior of interfaces between two different liquids in the limit of extreme softness such that by making the material even a little bit softer will result in the destruction of the interface by thermal oscillations. This project will study light confined in the interior part of the spherical interface by using the difference in refraction indexes on the opposite sides of the interface. This novel confinement enables the researchers to study the details of the thermal fluctuations of the ultrasoft interface with an unprecedent resolution and accuracy using the modes of the confined light. In addition to providing information about thermal motion of the molecules, optical excitations confined by the interface allow researchers to optically affect its mechanical oscillations, which will, in their turn affect the optical excitations. Such so-called optomechanical interaction is expected to be significantly enhanced in the ultrasoft materials and will allow studying novel optomechanical phenomena. This international collaborative project will also contribute to educational activities of both participating institutions (Queens College, New York and Tel-Aviv University, Israel) by developing new courses around the themes of the project and involving students, especially those from underrepresented groups, in work on the project. In particular, this project will fund a research internship opportunity for a student at Queens College’s M.S. in Photonics program, designed to help students from underrepresented groups to enter the labor market in photonics related industries.Technical abstractThis project deals with optomechanical properties of fluid-in-fluid spherical droplets actuated as whispering-gallery-mode resonators. The elasticity of the droplet-forming interface is controlled by surfactants and can be reduced to the limit of ultimate softness such that any additional surfactant would destruct the droplet by Brownian fluctuations. The mechanical softness of the droplets does not affect their performance as optical resonators, which is determined by the refractive index contrast between the material of the droplet and the surrounding medium. The combination of mechanical softness and the resonance enhanced sensitivity due to the formation of whispering gallery modes enables the optical interrogation of Brownian fluctuations of the surface with resolution exceeding that of existing Rayleigh- limited imaging techniques. The extreme softness of the droplets results in the giant mechanical response to resonantly enhanced optical forces allowing researchers to achieve a strength of optomechanical coupling far exceeding that in any other available optomechanical system. The regime of the extremely strong optomechanical coupling enables the study of optomechanical phenomena well outside of typically available range of parameters. For instance, in these systems one can achieve efficient cavity-mediated cooling of the surface oscillations to the smallest phonon population numbers despite the penalty imposed by the lower phonon frequencies. The high-value goal of the project is to cool the capillary oscillations of the softened droplets toward the quantum mechanical ground-state while maintaining the bath at room temperature. The high risks of such a project will be mitigated by testing various gas-liquid and liquid-liquid interfaces at different temperatures, pressures, and surfactant adsorption-concentration. The experimental efforts will be accompanied by theoretical research, with a novel perturbation approach based on generalized theory of Mie scattering to computing optical spectra of resonators with shapes deviating from spherical will be developed. A theory will also be developed of sideband cooling to minimize the phonon number at the non-resolved sideband limit.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要在极端条件下材料的行为通常是制定新的基本发现并开发新应用的地方。该项目的作者研究了极端柔软度极限的两个不同液体之间的界面的行为,以使材料甚至稍微柔软一点,将通过热振荡造成界面的破坏。该项目将通过使用界面相对侧的折射率差来研究球形界面内部限制的光。这种新颖的限制使研究人员能够使用封闭光的模式以前所未有的分辨率和准确性来研究Ultrasoft界面的热波动的细节。除了提供有关分子热运动的信息外,受界面限制的光兴奋表使研究人员能够光学影响其机械振荡,这反过来又会影响光学兴奋。预计这种所谓的光力相互作用将在Ultrasoft材料中显着增强,并将允许研究新型的光学机械现象。这个国际合作项目还将通过开发围绕该项目主题的新课程,尤其是学生,尤其是来自代表性不足的团体的学生,从事该项目的工作,还将为参与机构(纽约皇后学院和以色列的特拉维夫大学)的教育活动做出贡献。特别是,该项目将为皇后学院硕士的学生提供研究实习机会。在Photonics计划中,旨在帮助来自代表性不足的团体的学生进入光子学相关行业的劳动力市场。技术摘要该项目涉及流体中流体的球形液滴的光学机械性能,该液滴被激活为窃窃私语 - 甲壳虫模式谐振器。液滴形成界面的弹性受表面活性剂的控制,可以降低到最终柔软度的极限,从而使任何其他基础都会因布朗尼的波动而破坏液滴。液滴的机械柔软度不会影响其作为光学谐振器的性能,这取决于液滴和周围介质之间的折射率对比度。机械柔软度和共振的组合增强了由于窃窃图库模式的形成而提高了灵敏度,从而可以对表面的布朗式波动进行光学询问,分辨率超过了现有的雷利(Rayleigh)限制成像技术。液滴的极其柔软导致对增强的光学作用的巨大机械响应,使研究人员能够达到光学耦合的强度,远远超过了任何其他可用的光学机械系统。极其强大的光力耦合的制度使得在通常可用的参数范围之外对光学机械现象进行了研究。例如,在这些系统中,尽管较低的声子频率施加的惩罚,但可以实现有效的腔介导的表面振荡对最小的声子数量的冷却。该项目的高价值目标是冷却软液滴的毛细血管振荡向量子机械地面态,同时将浴缸保持在室温下。通过在不同温度,压力和表面活性剂吸附浓度下测试各种气体液体和液体液体界面,可以通过测试各种气体液体和液体液体界面来减轻此类项目的高风险。实验工作将通过理论研究来实现,并采用一种基于MIE散射的广义理论到计算谐振器的光谱具有与球形偏离球形的形状的光谱的新型扰动方法。还将开发出侧带冷却的理论,以最大程度地减少非分辨边带限制的声子数量。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,通过评估诚实地认为支持了支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Whispering gallery modes of a triatomic photonic molecule
三原子光子分子的回音壁模式
  • DOI:
    10.1063/5.0122772
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Shuvayev, Vladimir;Kreps, Stanislav;Carmon, Tal;Deych, Lev
  • 通讯作者:
    Deych, Lev
Coupled spherical-cavities
  • DOI:
    10.1063/5.0084815
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Stanislav Kreps;V. Shuvayev;M. Douvidzon;Baheej Bathish;Tom Lenkiewicz Abudi;A. Ghaznavi;Jie Xu;Yang Lin;L. Deych;T. Carmon
  • 通讯作者:
    Stanislav Kreps;V. Shuvayev;M. Douvidzon;Baheej Bathish;Tom Lenkiewicz Abudi;A. Ghaznavi;Jie Xu;Yang Lin;L. Deych;T. Carmon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lev Deych其他文献

Spatial and spectral mapping of supercontinuum level-crossing
超连续谱水平交叉的空间和光谱映射
  • DOI:
    10.1117/12.3029575
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nitzan Shani;Amit K. Shakya;Fan Cheng;V. Shuvayev;Lev Deych;Tal Carmon
  • 通讯作者:
    Tal Carmon
Radiation pressure induced oscillations of an optically levitating mirror
光学悬浮镜的辐射压力引起的振荡
  • DOI:
    10.1063/5.0197109
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Satyamev Jha;Tal Carmon;Fan Cheng;Lev Deych
  • 通讯作者:
    Lev Deych
Imaging of localized whispering-gallery-modes in a cylindrical fiber
圆柱形光纤中局部回音壁模式的成像
  • DOI:
    10.1117/12.3022155
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nitzan Shani;Fan Cheng;Lev Deych;Tal Carmon
  • 通讯作者:
    Tal Carmon

Lev Deych的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lev Deych', 18)}}的其他基金

Collaborative Research: NSF/ENG/ECCS-BSF: Complex liquid droplet structures as new optical and optomechanical platforms
合作研究:NSF/ENG/ECCS-BSF:复杂液滴结构作为新的光学和光机械平台
  • 批准号:
    1711801
  • 财政年份:
    2017
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Standard Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Continuing Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了