NSF-BSF:Fluid-fluid interfaces with diminished surface tension and giant thermal and quantum fluctuations as novel materials for ultrasoft photonics

NSF-BSF:具有减小的表面张力以及巨大的热和量子波动的流体界面作为超软光子学的新型材料

基本信息

  • 批准号:
    2102249
  • 负责人:
  • 金额:
    $ 28.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Nontechnical abstractThe behavior of materials under extreme conditions is often where new fundamental discoveries are made and new applications are developed. The authors of this project study the behavior of interfaces between two different liquids in the limit of extreme softness such that by making the material even a little bit softer will result in the destruction of the interface by thermal oscillations. This project will study light confined in the interior part of the spherical interface by using the difference in refraction indexes on the opposite sides of the interface. This novel confinement enables the researchers to study the details of the thermal fluctuations of the ultrasoft interface with an unprecedent resolution and accuracy using the modes of the confined light. In addition to providing information about thermal motion of the molecules, optical excitations confined by the interface allow researchers to optically affect its mechanical oscillations, which will, in their turn affect the optical excitations. Such so-called optomechanical interaction is expected to be significantly enhanced in the ultrasoft materials and will allow studying novel optomechanical phenomena. This international collaborative project will also contribute to educational activities of both participating institutions (Queens College, New York and Tel-Aviv University, Israel) by developing new courses around the themes of the project and involving students, especially those from underrepresented groups, in work on the project. In particular, this project will fund a research internship opportunity for a student at Queens College’s M.S. in Photonics program, designed to help students from underrepresented groups to enter the labor market in photonics related industries.Technical abstractThis project deals with optomechanical properties of fluid-in-fluid spherical droplets actuated as whispering-gallery-mode resonators. The elasticity of the droplet-forming interface is controlled by surfactants and can be reduced to the limit of ultimate softness such that any additional surfactant would destruct the droplet by Brownian fluctuations. The mechanical softness of the droplets does not affect their performance as optical resonators, which is determined by the refractive index contrast between the material of the droplet and the surrounding medium. The combination of mechanical softness and the resonance enhanced sensitivity due to the formation of whispering gallery modes enables the optical interrogation of Brownian fluctuations of the surface with resolution exceeding that of existing Rayleigh- limited imaging techniques. The extreme softness of the droplets results in the giant mechanical response to resonantly enhanced optical forces allowing researchers to achieve a strength of optomechanical coupling far exceeding that in any other available optomechanical system. The regime of the extremely strong optomechanical coupling enables the study of optomechanical phenomena well outside of typically available range of parameters. For instance, in these systems one can achieve efficient cavity-mediated cooling of the surface oscillations to the smallest phonon population numbers despite the penalty imposed by the lower phonon frequencies. The high-value goal of the project is to cool the capillary oscillations of the softened droplets toward the quantum mechanical ground-state while maintaining the bath at room temperature. The high risks of such a project will be mitigated by testing various gas-liquid and liquid-liquid interfaces at different temperatures, pressures, and surfactant adsorption-concentration. The experimental efforts will be accompanied by theoretical research, with a novel perturbation approach based on generalized theory of Mie scattering to computing optical spectra of resonators with shapes deviating from spherical will be developed. A theory will also be developed of sideband cooling to minimize the phonon number at the non-resolved sideband limit.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术抽象材料在极端条件下的行为通常是有新的基本发现和开发新应用的地方。这个项目的作者研究了两种不同液体之间在极软极限下的界面行为,使材料变得更软会导致热振荡对界面的破坏。这个项目将利用球面两侧折射率的差异来研究限制在球面内部的光。这种新的限制使研究人员能够利用限制光的模式以前所未有的分辨率和精度研究超软界面的热涨落细节。除了提供有关分子热运动的信息外,受界面限制的光学激发允许研究人员光学地影响其机械振荡,而机械振荡反过来又会影响光学激发。这种所谓的光机械相互作用有望在超软材料中得到显著增强,并将使研究新的光机械现象成为可能。这一国际合作项目还将促进两个参与机构(纽约皇后学院和以色列特拉维夫大学)的教育活动,方法是围绕该项目的主题开发新的课程,并让学生,特别是来自代表性不足群体的学生参与该项目的工作。特别是,这个项目将资助皇后学院光子学硕士项目的一名学生的研究实习机会,该项目旨在帮助代表人数不足的群体的学生进入与光子学相关的劳动力市场。技术摘要本项目研究液体中球形液滴作为耳语画廊模谐振器驱动的光力学特性。液滴形成界面的弹性由表面活性剂控制,并可以降低到极端柔软的极限,因此任何添加的表面活性剂都会通过布朗波动来破坏液滴。液滴的机械柔软性不影响其作为光学谐振器的性能,这是由液滴材料与周围介质之间的折射率对比度决定的。机械柔软性和由于耳语走廊模式的形成而产生的共振增强的灵敏度相结合,使得能够以超过现有瑞利限制成像技术的分辨率来光学询问表面的布朗起伏。液滴的极度柔软导致了对共振增强的光学力的巨大机械响应,使研究人员能够实现远远超过任何其他可用的光学机械系统的光机耦合强度。极强的光机耦合机制使得对光机现象的研究远远超出了通常可用的参数范围。例如,在这些系统中,人们可以实现有效的腔中介冷却表面振荡到最小的声子布居数,尽管较低的声子频率施加了惩罚。该项目的高价值目标是冷却软化液滴向量子力学基态的毛细振荡,同时将浴缸保持在室温下。通过在不同温度、压力和表面活性剂吸附浓度下测试各种气-液和液-液界面,可以降低此类项目的高风险。实验工作将伴随着理论研究,将发展一种新的基于广义Mie散射理论的微扰方法来计算形状偏离球面的谐振器的光谱。还将开发边带冷却理论,以将未解决的边带限制处的声子数量降至最低。该奖项反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coupled spherical-cavities
  • DOI:
    10.1063/5.0084815
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Stanislav Kreps;V. Shuvayev;M. Douvidzon;Baheej Bathish;Tom Lenkiewicz Abudi;A. Ghaznavi;Jie Xu;Yang Lin;L. Deych;T. Carmon
  • 通讯作者:
    Stanislav Kreps;V. Shuvayev;M. Douvidzon;Baheej Bathish;Tom Lenkiewicz Abudi;A. Ghaznavi;Jie Xu;Yang Lin;L. Deych;T. Carmon
Whispering gallery modes of a triatomic photonic molecule
三原子光子分子的回音壁模式
  • DOI:
    10.1063/5.0122772
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Shuvayev, Vladimir;Kreps, Stanislav;Carmon, Tal;Deych, Lev
  • 通讯作者:
    Deych, Lev
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lev Deych其他文献

Spatial and spectral mapping of supercontinuum level-crossing
超连续谱水平交叉的空间和光谱映射
  • DOI:
    10.1117/12.3029575
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nitzan Shani;Amit K. Shakya;Fan Cheng;V. Shuvayev;Lev Deych;Tal Carmon
  • 通讯作者:
    Tal Carmon
Radiation pressure induced oscillations of an optically levitating mirror
光学悬浮镜的辐射压力引起的振荡
  • DOI:
    10.1063/5.0197109
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Satyamev Jha;Tal Carmon;Fan Cheng;Lev Deych
  • 通讯作者:
    Lev Deych
Imaging of localized whispering-gallery-modes in a cylindrical fiber
圆柱形光纤中局部回音壁模式的成像
  • DOI:
    10.1117/12.3022155
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nitzan Shani;Fan Cheng;Lev Deych;Tal Carmon
  • 通讯作者:
    Tal Carmon

Lev Deych的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lev Deych', 18)}}的其他基金

Collaborative Research: NSF/ENG/ECCS-BSF: Complex liquid droplet structures as new optical and optomechanical platforms
合作研究:NSF/ENG/ECCS-BSF:复杂液滴结构作为新的光学和光机械平台
  • 批准号:
    1711801
  • 财政年份:
    2017
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Standard Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Continuing Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Standard Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
  • 批准号:
    2400200
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
  • 批准号:
    2401159
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了