Femtosecond Time-Resolved Studies of the First 200 fs Photochemical and Photophysical Relaxation Dynamics in the Gas and Liquid Phases
气相和液相中前 200 fs 光化学和光物理弛豫动力学的飞秒时间分辨研究
基本信息
- 批准号:2102619
- 负责人:
- 金额:$ 49.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With support from the Chemical Structure, Dynamics, and Mechanisms-A (CSDM-A) Program in the Division of Chemistry, Professors Alexander Tarnovsky and Massimo Olivucci at Bowling Green State University are studying the effects that a variety of solvents have on the very earliest events in chemical reactions. The research seeks a better understanding of the dynamics within the first 200 femtoseconds, less than 200 millionths of a billionth of a second, because these early motions often determine the outcome of a light-induced chemical reaction. Changes caused by the solvent can make the difference between a successful reaction that exploits the energy from light and an ineffective reaction that wastes energy at the molecular level. The research team uses extremely short pulses of laser light to measure the chemical reaction dynamics experimentally, and also performs computer simulations capable of tracing the breaking and making of chemical bonds in the target molecules. A broad objective of the research is the development of predictive models to describe elementary processes that ultimately determine how light-energy can be optimally exploited for various materials and technological applications. In addition to the scientific objectives, the interdisciplinary research program provides professional development and training for graduate and undergraduate students, preparing them for advanced careers in academia, government labs, and industry. Through the outreach to local K-12 community teachers and the Toledo Imagination Station science museum, the research team relates the impact of their program to broader societal issues and the significance of science, technology, engineering, and mathematics (STEM) research in general. In this project, the research team led by Professors Tarnovsky and Olivucci is investigating the earliest (200 fs) stage of electronically excited-state dynamics of molecules in solution and in the gas phase. This research provides an opportunity to disentangle and comprehend, in a systematic way, the solvent effects on excited-state dynamics occurring in a time-window that is still not well understood at ambient temperature. Such insight is important, because the electronic and nuclear dynamics occurring on this short time scale often influence, if not determine, the reaction outcome. The study examines the reactions of polyhalomethanes and heterocyclic aromatics, both of which are sensitive to solvent effects, and where the solvent is likely to play a crucial role in the excited-state dynamics. In order to access this initial timescale, the research team uses tunable (deep-UV to near-IR) 20-30 fs optical pulses and ultrafast transient absorption spectroscopy in both solution and gas phases, complemented by femtosecond stimulated Raman spectroscopy, femtosecond time-resolved X-ray absorption spectroscopy, and ab initio quantum-classical surface-hopping trajectory calculations with explicit inclusion of solvent molecules. Such experimental-theoretical characterization of excited-state dynamics promises fundamental insights into reaction multi-dimensionality, non-adiabaticity, and non-equilibrium solvent effects on intramolecular nuclear and electronic motions, providing an entry point for effective control schemes of light-triggered ultrafast chemical processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学结构、动力学和机理a (CSDM-A)项目的支持下,鲍灵格林州立大学的Alexander Tarnovsky教授和Massimo Olivucci教授正在研究各种溶剂对化学反应中最早期事件的影响。这项研究旨在更好地了解前200飞秒(不到十亿分之一秒的2亿分之一)内的动力学,因为这些早期运动通常决定了光诱导化学反应的结果。由溶剂引起的变化决定了反应是成功地利用光能,还是低效地在分子水平上浪费能量。研究小组利用极短的激光脉冲来实验测量化学反应动力学,并进行计算机模拟,以追踪目标分子中化学键的断裂和形成。该研究的一个广泛目标是开发预测模型来描述基本过程,最终确定如何将光能最佳地利用于各种材料和技术应用。除了科学目标之外,跨学科研究计划还为研究生和本科生提供专业发展和培训,为他们在学术界,政府实验室和工业领域的高级职业生涯做好准备。通过与当地K-12社区教师和托莱多想象站科学博物馆的联系,研究团队将他们的项目的影响与更广泛的社会问题以及科学、技术、工程和数学(STEM)研究的意义联系起来。在这个项目中,由Tarnovsky教授和Olivucci教授领导的研究小组正在研究溶液和气相分子电子激发态动力学的最早阶段(200fs)。这项研究提供了一个机会,以一种系统的方式解开和理解溶剂对激发态动力学的影响,这种影响发生在一个时间窗口中,在环境温度下仍然没有得到很好的理解。这种见解很重要,因为在如此短的时间尺度上发生的电子和核动力学即使不能决定反应结果,也常常会影响反应结果。本研究考察了多卤甲烷和杂环芳烃的反应,这两种反应都对溶剂效应敏感,并且溶剂可能在激发态动力学中起关键作用。为了达到这个初始时间尺度,研究小组在溶液和气相中使用可调谐(深紫外到近红外)20-30秒的光脉冲和超快瞬态吸收光谱,并辅之以飞秒受激拉曼光谱、飞秒时间分辨x射线吸收光谱和从头算量子经典表面跳跃轨迹计算,其中明确包含溶剂分子。这种激发态动力学的实验-理论表征保证了对反应的多维性、非绝热性和非平衡溶剂对分子内核和电子运动的影响的基本见解,为光触发的超快化学过程的有效控制方案提供了切入点。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Excited-State-Selective Ultrafast Relaxation Dynamics and Photoisomerization of trans -4,4′-Azopyridine
反式-4,4-偶氮吡啶的激发态选择性超快弛豫动力学和光异构化
- DOI:10.1021/acs.jpclett.2c02523
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Obloy, Laura M.;El-Khoury, Patrick Z.;Tarnovsky, Alexander N.
- 通讯作者:Tarnovsky, Alexander N.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Tarnovsky其他文献
Alexander Tarnovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Tarnovsky', 18)}}的其他基金
CAREER: Monitoring ultrafast excited-state selective dynamics, bond rupture, and rearrangement of small polyatomic molecules in solution
职业:监测溶液中小多原子分子的超快激发态选择性动力学、键断裂和重排
- 批准号:
0847707 - 财政年份:2009
- 资助金额:
$ 49.95万 - 项目类别:
Standard Grant
相似国自然基金
SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
- 批准号:82360504
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
- 批准号:82305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
- 批准号:62171167
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
- 批准号:31971706
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
建筑工程计划中Time Buffer 的形成和分配 – 工程项目管理中的社会性研究
- 批准号:71671098
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
光学Parity-Time对称系统中破坏点的全光调控特性研究
- 批准号:11504059
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A femtosecond beamline for time-resolved momentum microscopy
用于时间分辨动量显微镜的飞秒光束线
- 批准号:
LE240100073 - 财政年份:2024
- 资助金额:
$ 49.95万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Characterizing Local Chemical Order in Multi-Principal Element Alloys by Femtosecond Time-Resolved Ultrafast Electron Diffraction
通过飞秒时间分辨超快电子衍射表征多主元素合金中的局部化学顺序
- 批准号:
2327777 - 财政年份:2023
- 资助金额:
$ 49.95万 - 项目类别:
Continuing Grant
Application of laser-driven circularly polarized femtosecond soft-x-ray pulse to time-resolved x-ray magnetic circular dichroism measurement
激光驱动圆偏振飞秒软X射线脉冲在时间分辨X射线磁圆二色性测量中的应用
- 批准号:
22H01197 - 财政年份:2022
- 资助金额:
$ 49.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Tuneable Femtosecond Laser Sources for Time-Resolved Ultrafast Spectroscopy
用于时间分辨超快光谱的可调谐飞秒激光源
- 批准号:
RTI-2022-00316 - 财政年份:2021
- 资助金额:
$ 49.95万 - 项目类别:
Research Tools and Instruments
MRI: Acquisition of a femtosecond laser system for time-resolved studies using Arizona State University's (ASU) Compact X-ray Light Source (CXLS)
MRI:使用亚利桑那州立大学 (ASU) 的紧凑型 X 射线光源 (CXLS) 获取飞秒激光系统,用于时间分辨研究
- 批准号:
2019014 - 财政年份:2020
- 资助金额:
$ 49.95万 - 项目类别:
Standard Grant
Structural tracking of nuclear wavepacket dynamics using femtosecond time-resolved X-ray absorption spectroscopy
使用飞秒时间分辨 X 射线吸收光谱进行核波包动力学的结构跟踪
- 批准号:
19H04407 - 财政年份:2019
- 资助金额:
$ 49.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Light-Induced Protein Quake of Visual Rhodopsin Investigated by Femtosecond Time-Resolved X-Ray Scattering
通过飞秒时间分辨 X 射线散射研究光诱导视觉视紫红质的蛋白质地震
- 批准号:
1817862 - 财政年份:2018
- 资助金额:
$ 49.95万 - 项目类别:
Standard Grant
Femtosecond time resolved IR spectrometer
飞秒时间分辨红外光谱仪
- 批准号:
403630165 - 财政年份:2018
- 资助金额:
$ 49.95万 - 项目类别:
Major Research Instrumentation
Time-resolved serial femtosecond crystallography at an XFEL to reveal conformational changes in Cl- pump rhodopsin, NM-R3
XFEL 的时间分辨连续飞秒晶体学揭示 Cl-泵视紫红质 NM-R3 的构象变化
- 批准号:
17K07324 - 财政年份:2017
- 资助金额:
$ 49.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimation of optical properties in biological tissue using time-resolved spectroscopy with femtosecond laser
使用飞秒激光时间分辨光谱估计生物组织的光学特性
- 批准号:
17H02081 - 财政年份:2017
- 资助金额:
$ 49.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)