Direct Calculation of Activation Energies and Entropies for Chemical Dynamics

化学动力学活化能和熵的直接计算

基本信息

项目摘要

Ward Thompson of the University of Kansas is supported by an award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry to develop and apply methods for determining how the rates of dynamical processes in chemistry change with temperature. The effect of temperature gives insight into the factors that determine the rate of a chemical transformation. The newly developed methods will provide a way to decompose these on a molecule-by-molecule basis. The influences of the chemical composition and entropy on chemical timescales will also be examined. The proposed methods will be tested in investigations of dynamics in three chemical systems relevant to materials and biology: Water confined in nanoscale amorphous silica pores, water in the hydration shell of proteins, and water molecules participating in and associating with hydrogen-bonded supramolecular assemblies. The approaches developed in the proposed work will provide new insight into these problems by addressing important open questions about the energetic and entropic driving forces for the dynamics. The Thompson group will also create new course materials that improve student understanding of, and appreciation for, dynamics in chemistry.The Thompson group will develop and apply theoretical methods for directly calculating activation energies and entropies for dynamical processes important in chemistry. Methods will be investigated for 1) determining the molecule-by-molecule contributions to the activation energy to yield detailed mechanistic insight into the underlying dynamics; 2) directly determining the composition dependence of dynamical timescales; 3) the rigorous, direct calculation of the activation entropy along with new molecular-level insight. These approaches are based on evaluating derivatives with respect to temperature (and other thermodynamic variables) of the time correlation functions from which dynamical timescales, such as rate constants or diffusion coefficients, can be obtained. These derivatives are themselves time correlation functions and can be evaluated straightforwardly from the same molecular dynamics simulations. In this way, an activation energy or entropy that is normally obtained from calculations at multiple temperatures through an Arrhenius analysis can be determined from simulations at a single temperature. A key advantage is that this approach enables a rigorous decomposition of the activation energy or entropy into contributions from the interactions and motions present in the system, providing otherwise unavailable physical insight.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
堪萨斯大学的Ward Thompson获得了化学系化学理论、模型和计算方法项目的奖励,以开发和应用确定化学动态过程的速率如何随温度变化的方法。 温度的影响使我们了解决定化学转化速率的因素。新开发的方法将提供一种在分子基础上分解这些物质的方法。 化学成分和熵对化学时标的影响也将被检查。 所提出的方法将在与材料和生物学相关的三个化学系统的动力学研究中进行测试:限制在纳米级无定形二氧化硅孔中的水,蛋白质水化壳中的水,以及参与氢键超分子组装并与之关联的水分子。 在拟议的工作中开发的方法将提供新的见解,这些问题,解决重要的开放问题的活力和熵的动力驱动力。 汤普森小组还将创建新的课程材料,以提高学生对化学动力学的理解和欣赏。汤普森小组将开发和应用直接计算化学中重要动力学过程的活化能和熵的理论方法。 方法将被调查1)确定分子的活化能的贡献,以产生详细的机制洞察到潜在的动力学; 2)直接确定的组成依赖的动态时间尺度; 3)严格的,直接计算的活化熵沿着与新的分子水平的见解。 这些方法是基于评估衍生物相对于温度(和其他热力学变量)的时间相关函数,从动态时间尺度,如速率常数或扩散系数,可以得到。 这些导数本身就是时间相关函数,可以直接从相同的分子动力学模拟中进行评估。 以这种方式,通常通过阿耳忒弥斯分析从多个温度下的计算获得的活化能或熵可以从单个温度下的模拟确定。 这种方法的一个关键优势是,它能够将活化能或熵严格分解为系统中存在的相互作用和运动的贡献,提供了否则无法获得的物理洞察力。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of polarizability and charge transfer on water dynamics and the underlying activation energies
极化率和电荷转移对水动力学和潜在活化能的影响
  • DOI:
    10.1063/5.0151253
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rick, Steven W.;Thompson, Ward H.
  • 通讯作者:
    Thompson, Ward H.
Direct calculation of the temperature dependence of 2D-IR spectra: Urea in water
直接计算二维红外光谱的温度依赖性:水中的尿素
  • DOI:
    10.1063/5.0135627
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Borkowski, Ashley K.;Campbell, N. Ian;Thompson, Ward H.
  • 通讯作者:
    Thompson, Ward H.
A Maxwell relation for dynamical timescales with application to the pressure and temperature dependence of water self-diffusion and shear viscosity
动态时间尺度的麦克斯韦关系及其应用于水自扩散和剪切粘度的压力和温度依赖性
  • DOI:
    10.1039/d3cp01386c
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Piskulich, Zeke A.;Borkowski, Ashley K.;Thompson, Ward H.
  • 通讯作者:
    Thompson, Ward H.
Using Activation Energies to Elucidate Mechanisms of Water Dynamics
  • DOI:
    10.1021/acs.jpca.1c08020
  • 发表时间:
    2021-11-25
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Piskulich, Zeke A.;Laage, Damien;Thompson, Ward H.
  • 通讯作者:
    Thompson, Ward H.
Water Diffusion Proceeds via a Hydrogen-Bond Jump Exchange Mechanism
  • DOI:
    10.1021/acs.jpclett.2c00825
  • 发表时间:
    2022-05-23
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Gomez, Axel;Piskulich, Zeke A.;Laage, Damien
  • 通讯作者:
    Laage, Damien
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ward Thompson其他文献

Experience of landscape : understanding responses to landscape design and exploring demands for the future
景观体验:了解景观设计的反应并探索未来的需求
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ward Thompson;C. Joan
  • 通讯作者:
    C. Joan

Ward Thompson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ward Thompson', 18)}}的其他基金

Removing the Barriers to the Calculation of Activation Energies, Activation Volumes, and Mechanistic Insight for Chemical Dynamics
消除化学动力学活化能、活化体积和机理洞察计算的障碍
  • 批准号:
    1800559
  • 财政年份:
    2018
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Understanding Vibrational Spectroscopic Probes of the Structure and Dynamics of Liquids Confined in Mesoporous Materials
了解介孔材料中液体的结构和动力学的振动光谱探针
  • 批准号:
    1012661
  • 财政年份:
    2010
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Understanding Vibrational Energy Transfer and Spectra in Microporous and Mesoporous Materials
了解微孔和介孔材料中的振动能量传递和光谱
  • 批准号:
    0518290
  • 财政年份:
    2005
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant

相似海外基金

An autonomous machine learning-based molecular dynamics method that utilizes first-principles atomic energy calculation
一种基于自主机器学习的分子动力学方法,利用第一原理原子能计算
  • 批准号:
    23H03415
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A new nuclear matter calculation method based on realistic nuclear forces and the effect of many-body terms on the equation of state
基于现实核力和多体项对状态方程影响的新核物质计算方法
  • 批准号:
    23K03397
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of calculation method for Magnetophonics and its application to magnetic materials
磁声学计算方法的发展及其在磁性材料中的应用
  • 批准号:
    23KJ2165
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Understanding moisture-induced adhesion weakening via first-principles protonation calculation
通过第一原理质子化计算了解水分引起的粘附减弱
  • 批准号:
    23H01697
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Calculation and the Verification of the maximum electric power of Microbial Fuel Cells by Minimizing the Internal Resistance Using the Mathematical Model
微生物燃料电池内阻最小化最大电功率的数学模型计算与验证
  • 批准号:
    23K11483
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applying Innovative Artificial Intelligence Approaches to a Large Sleep Physiologic Biorepository to Integrate Sleep Disruption in Cardiovascular Risk Calculation
将创新的人工智能方法应用于大型睡眠生理生物库,将睡眠中断纳入心血管风险计算
  • 批准号:
    10731500
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
RUI: Calculation of Higher Order Corrections to Positronium Energy Levels
RUI:正电子能级高阶修正的计算
  • 批准号:
    2308792
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Study of the B-meson wavefunction based on QCD and its applications to precision calculation of rare B decays
基于QCD的B介子波函数研究及其在稀有B衰变精密计算中的应用
  • 批准号:
    23K03419
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
What causes misconduct: Does inter-corporate competition skew the calculation of benefits and costs?
导致不当行为的原因:公司间竞争是否会扭曲收益和成本的计算?
  • 批准号:
    23K01362
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
  • 批准号:
    545643-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了