EAGER: Thermo-hydro-chemical modeling framework for mid-ocean ridge hydrothermal systems

EAGER:洋中脊热液系统的热水化学建模框架

基本信息

  • 批准号:
    2103214
  • 负责人:
  • 金额:
    $ 8.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

EAGER: Thermo-hydro-chemical modeling framework for mid-ocean ridge hydrothermal systemsThe objective is to use a rapidly developing class of computer models to advance understanding of the large-scale hydrothermal systems that occur beneath the 65,000 km-long submarine system of mountain ranges referred to as mid-ocean ridges (MOR). The chemical exchange that occurs as seawater circulates through seafloor rocks affects the balance of ions in seawater and influences the carbon cycle and Earth’s climate. The resulting modifications to the ocean floor rocks also affect continental volcanism and the chemical evolution of Earth’s mantle. The proposed approach uses modern thermo-hydro-chemical modeling codes and massively parallel computation. It is a fundamentally new way to organize, interpret, and extend data that have been gathered from decades of study of MOR hydrothermal systems. The models provide a way to generalize observations into predictive tools that can be used to infer how the hydrothermal systems operate under changing conditions. This type of information is essential to the broader Earth science community. The computer modeling approach is at an early stage of development and hence benefits from special funding for exploratory research. The knowledge derived from this project will improve the ability to understand how Earth’s climate is controlled by natural processes, and why climate and ocean chemistry were different in the geologic past. The results will also enhance the capabilities of the U.S. research community for using high-performance computing to study natural Earth processes. A key part of the project is to make the approach accessible to other researchers, including students, through participation in ongoing international workshops and short courses. In detail, the research involves adapting and developing protocols for using the Thermo-hydro-chemical (THC) code ToughReact, that has been developed over the past 40 years, to simulate the hydrothermal processes at midocean ridges. THC models explicitly couple fluid flow, heat transfer, and mineral-fluid chemical reactions, and hence can clarify the interrelationships between the many and variable parameters that affect the behavior of hydrothermal systems. The research plan involves running hundreds of simulations, with varying parameters, through a sequence of gradually increasing complexity to determine how physical characteristics (heat flux, porosity, permeability, fracture spacing, depth of circulation) and chemical characteristics (fracture and matrix mineralogy, alteration mineralogy, mineral-fluid reaction kinetics) relate to patterns of fluid chemical evolution, mineral alteration, and vent fluid compositions. The progression is to start with 2-dimensional simulations of steady state flow with chemical and mineralogical evolution proceeding for hundreds of years, the approximate time required for seafloor spreading to move the rocks a distance equal to one or two simulation grid blocks. The steady state simulations can be used to probe the main features of fluid circulation and temperature/alteration distribution for configurations representing different spreading rates, which also represent different circulation depths, lithologic structure, permeability structure, and heating profiles. The next step will be to simulate seafloor spreading in 2D, by migrating the rock matrix with its attendant temperature and mineralogy away from the ridge and adding new hot rock at the ridge axis. The results of the proposed investigation could have wide-ranging impacts in the Earth science, ocean science, planetary science, and climate science communities. In addition to producing new insights into the workings of seafloor hydrothermal systems, this project will lay groundwork for advancements in the application of modern, multi-component reactive transport simulations to broader problems in marine geology and geophysics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
热切:海洋中脊热液系统的热-水化学建模框架目标是使用快速发展的一类计算机模型来促进对发生在65,000公里长的海底山脉系统(称为海洋中脊(MOR))之下的大规模热液系统的理解。海水在海底岩石中循环时发生的化学交换影响了海水中离子的平衡,影响了碳循环和地球气候。由此产生的对海底岩石的改变也影响了大陆火山活动和地幔的化学演化。该方法采用现代热-水化学建模代码和大规模并行计算。这是一种从根本上组织、解释和扩展从数十年来对MOR热液系统的研究中收集到的数据的新方法。这些模型提供了一种将观测结果概括为预测工具的方法,可以用来推断热液系统在变化条件下的运作方式。这类信息对更广泛的地球科学界来说是必不可少的。计算机建模方法处于发展的早期阶段,因此受益于探索性研究的特别资助。从这个项目中获得的知识将提高人们理解地球气候是如何受自然过程控制的能力,以及为什么气候和海洋化学在过去的地质时期是不同的。研究结果还将增强美国研究界使用高性能计算研究地球自然过程的能力。该项目的一个关键部分是通过参加正在进行的国际讲习班和短期课程,使包括学生在内的其他研究人员能够使用这种方法。具体来说,这项研究包括调整和开发使用热-水化学(THC)代码ToughReact的协议,该代码已经开发了40年,用于模拟洋中脊的热液过程。THC模型明确地耦合了流体流动、传热和矿物-流体化学反应,因此可以阐明影响热液系统行为的许多可变参数之间的相互关系。研究计划包括运行数百次不同参数的模拟,通过一系列逐渐增加的复杂性来确定物理特征(热流密度、孔隙度、渗透率、裂缝间距、循环深度)和化学特征(裂缝和基质矿物学、蚀变矿物学、矿物-流体反应动力学)与流体化学演化模式、矿物蚀变和喷口流体成分的关系。研究的进展是从二维稳态流动的模拟开始,化学和矿物学的演化过程持续了数百年,海底扩张将岩石移动一段距离相当于一个或两个模拟网格块的大约时间。稳态模拟可用于研究不同扩张速率构型的流体循环和温度蚀变分布的主要特征,这些构型也代表不同的循环深度、岩性结构、渗透率结构和加热剖面。下一步将是模拟2D的海底扩展,通过将岩石基质及其伴随的温度和矿物学从脊移开,并在脊轴处添加新的热岩石。拟议的调查结果可能对地球科学、海洋科学、行星科学和气候科学界产生广泛的影响。除了对海底热液系统的运作产生新的见解外,该项目还将为现代多组分反应输运模拟在海洋地质和地球物理学中更广泛问题的应用奠定基础。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermo‐Hydro‐Chemical Simulation of Mid‐Ocean Ridge Hydrothermal Systems: Static 2D Models and Effects of Paleo‐Seawater Chemistry
大洋中脊热液系统的热氢化学模拟:静态二维模型和古海水化学的影响
  • DOI:
    10.1029/2022gc010524
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    DePaolo, Donald J.;Sonnenthal, Eric L.;Pester, Nicholas J.
  • 通讯作者:
    Pester, Nicholas J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald DePaolo其他文献

Lattice Boltzmann simulation of water isotope
水同位素的格子玻尔兹曼模拟

Donald DePaolo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald DePaolo', 18)}}的其他基金

Calcium and potassium isotopic study of igneous and metamorphic transport processes
火成岩和变质岩输送过程的钙和钾同位素研究
  • 批准号:
    2023513
  • 财政年份:
    2020
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Standard Grant
Effects of paleoseawater composition on chemical and isotopic exchange at mid-ocean ridges
古海水成分对洋中脊化学和同位素交换的影响
  • 批准号:
    1737186
  • 财政年份:
    2017
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Lhasa Block Top to Bottom--Lithospheric Evolution of Asia's Leading Edge
合作研究:拉萨地块自上而下——亚洲前沿的岩石圈演化
  • 批准号:
    1111959
  • 财政年份:
    2011
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Continuing Grant
Ca-Mg Isotopic Probe of Transport Processes in High Temperature Geochemical Systems
高温地球化学系统中输运过程的钙镁同位素探针
  • 批准号:
    1050000
  • 财政年份:
    2011
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Continuing Grant
A Documentary Film: Earth As We Know It
纪录片:我们所知道的地球
  • 批准号:
    1049231
  • 财政年份:
    2010
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Standard Grant
HAWAII'S VOLCANOES: A MEDIA PROJECT
夏威夷的火山:媒体项目
  • 批准号:
    0818180
  • 财政年份:
    2009
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Standard Grant
Diffusive Isotopic Fractionation and the Structure of Silicate Liquids
扩散同位素分馏和硅酸盐液体的结构
  • 批准号:
    0838168
  • 财政年份:
    2009
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Continuing Grant
Transport times and ages of Quaternary fine-grained terrestrial sediments using U series isotopes
使用 U 系列同位素计算第四纪细粒陆地沉积物的迁移时间和年龄
  • 批准号:
    0617704
  • 财政年份:
    2006
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Standard Grant
Structure of the Hawaiian Mantle Plume: Geochemical-Isotopic Mapping Using Post-Shield Lavas
夏威夷地幔柱的结构:使用盾后熔岩进行地球化学同位素测绘
  • 批准号:
    0408521
  • 财政年份:
    2004
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Continuing Grant
Acquisition of a High Precision Thermal Ionization Mass Spectrometer for Geochemical Research
获取用于地球化学研究的高精度热电离质谱仪
  • 批准号:
    0236741
  • 财政年份:
    2003
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Standard Grant

相似国自然基金

Thermo-TDR技术监测根区土壤物理性状:根系的影响机理及校正
  • 批准号:
    41977011
  • 批准年份:
    2019
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
风寒湿介导Thermo-TRPs/HSPs串话调控膝骨关节炎及温通中药的干预机制研究
  • 批准号:
    81973874
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Multiscale Thermo-Hydro-Mechanical Analysis of Thawing/Freezing Cycles in Partially Saturated Soils: Application to Stability of Permafrost Layers and Climate Change
部分饱和土壤解冻/冻结循环的多尺度热水力机械分析:在多年冻土层稳定性和气候变化中的应用
  • 批准号:
    RGPIN-2020-06480
  • 财政年份:
    2022
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Discovery Grants Program - Individual
Thermo-Hydro-Mechanical Processes in Evolving Multi-Phasic Geomaterials, Interfaces and Geoenvironmental Endeavours
演化的多相岩土材料、界面和地质环境努力中的热水力机械过程
  • 批准号:
    RGPIN-2021-02650
  • 财政年份:
    2022
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluation of geosynthetic reinforced pavements by field and laboratory testing integrated with thermo-hydro-mechanical modeling
通过现场和实验室测试与热水力学模型相结合对土工合成材料加固路面进行评估
  • 批准号:
    549773-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Alliance Grants
CT- and multi-monitoring ready thermo-frozen-hydro-mechanical 3D loading system
CT 和多监测就绪热冷冻水机械 3D 加载系统
  • 批准号:
    500412763
  • 财政年份:
    2022
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Major Research Instrumentation
Coupled Thermo-Hydro-Mechanical Behavior of Soils Subjected to Freeze-Thaw Cycles
冻融循环下土壤的热-水-机械耦合行为
  • 批准号:
    2034204
  • 财政年份:
    2021
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Standard Grant
Thermo-Hydro-Mechanical Processes in Evolving Multi-Phasic Geomaterials, Interfaces and Geoenvironmental Endeavours
演化的多相岩土材料、界面和地质环境努力中的热水力机械过程
  • 批准号:
    RGPIN-2021-02650
  • 财政年份:
    2021
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluation of geosynthetic reinforced pavements by field and laboratory testing integrated with thermo-hydro-mechanical modeling
通过现场和实验室测试与热水力学模型相结合对土工合成材料加固路面进行评估
  • 批准号:
    549773-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Alliance Grants
Multiscale Thermo-Hydro-Mechanical Analysis of Thawing/Freezing Cycles in Partially Saturated Soils: Application to Stability of Permafrost Layers and Climate Change
部分饱和土壤解冻/冻结循环的多尺度热水力机械分析:在多年冻土层稳定性和气候变化中的应用
  • 批准号:
    RGPIN-2020-06480
  • 财政年份:
    2021
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale Thermo-Hydro-Mechanical Analysis of Thawing/Freezing Cycles in Partially Saturated Soils: Application to Stability of Permafrost Layers and Climate Change
部分饱和土壤解冻/冻结循环的多尺度热水力机械分析:在多年冻土层稳定性和气候变化中的应用
  • 批准号:
    RGPIN-2020-06480
  • 财政年份:
    2020
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluation of geosynthetic reinforced pavements by field and laboratory testing integrated with thermo-hydro-mechanical modeling
通过现场和实验室测试与热水力学模型相结合对土工合成材料加固路面进行评估
  • 批准号:
    549773-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 8.48万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了