Collaborative Research: OAC Core: Improving Utilization of High-Performance Computing Systems via Intelligent Co-scheduling

合作研究:OAC Core:通过智能协同调度提高高性能计算系统的利用率

基本信息

  • 批准号:
    2103510
  • 负责人:
  • 金额:
    $ 24.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This project is aimed at increasing efficiency of high-performance computing systems by scheduling multiple jobs on the same set of nodes in a system, generally called co-scheduling. This is a break from current practice in which nodes are dedicated to one job at a time, which results in predictable execution time but inefficient use of system resources. To make this practical, the project will develop analyses to determine how to carry out co-scheduling such that overall system efficiency is improved while the performance impact on individual applications is minimized. In particular, the goal is to co-schedule jobs that can co-exist without contending for similar resources on the nodes. The work done in this project will help achieve better efficiency on high-performance systems, which will impact application domains such as climate/weather, renewable energy, and national security. The work will be implemented and validated on systems at Lawrence Livermore and Sandia National Laboratories and then transitioned into software that will be used at these national laboratories. The project will also have an impact on education by integrating the techniques in this research into courses covering parallel and distributed computing at the PIs' institutions. In addition, the project will take place at two Hispanic-serving institutions, and the PIs have a history of advising under-represented students; the project will broaden participation in computing by recruiting Hispanic undergraduates to work on the project and sending them to national laboratories for internships.The long-standing abstraction at high-end computing facilities is one of a submitted job being allocated a set of dedicated nodes. However, this makes systems much less efficient, as there are more per-node resources that will often be used inefficiently. In addition, the demand for high-end systems is increasing and dedicating nodes to jobs can increase job turnaround time and decrease overall system throughput. One way to address this problem is for supercomputer centers to break from the current common practice of assigning each job a private, isolated portion of a supercomputer. The intellectual merit of the project is three-fold. First, novel profile analyses will be developed that will reveal the effects on jobs due to sharing nodes. Second, novel statistical projection techniques will be developed that predict scaling behavior of jobs that are utilizing shared nodes. Third, new job-level scheduling techniques will be designed that use the interference analysis and projections to choose a set of shared nodes that will lead to good job turnaround time and maximize system throughput. The broader impact of the project is multifold. This project will help achieve better efficiency on high-performance systems, which will benefit a broad range of applications that includes climate/weather prediction, nuclear energy, and national security. Through a long-standing collaboration with both Lawrence Livermore and Sandia National Laboratories, the PIs will implement and validate the techniques on LLNL and SNL systems as well as transition the techniques into future resource managers at the national laboratories. In addition, both PIs will broaden participation in computing by recruiting Hispanic undergraduates to work on the project and sending them to national labs for internships.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过在系统中的同一组节点上调度多个作业来提高高性能计算系统的效率,通常称为协同调度。这与当前的做法不同,在当前的做法中,节点一次专用于一个作业,这会导致可预测的执行时间,但会降低系统资源的使用效率。为了实现这一点,该项目将进行分析,以确定如何进行联合调度,从而提高整体系统效率,同时将对个别应用程序的性能影响降至最低。具体地说,目标是共同调度可以共存的作业,而不会竞争节点上的类似资源。该项目所做的工作将有助于在高性能系统上实现更高的效率,这将影响气候/天气、可再生能源和国家安全等应用领域。这项工作将在劳伦斯·利弗莫尔和桑迪亚国家实验室的系统上实施和验证,然后转换成将在这些国家实验室使用的软件。该项目还将对教育产生影响,将这项研究中的技术纳入私营部门各机构涉及并行和分布式计算的课程。此外,该项目将在两个拉美裔服务机构进行,私人投资机构有为代表性不足的学生提供建议的历史;该项目将通过招募拉美裔本科生参与该项目并将他们送到国家实验室实习来扩大对计算机的参与。长期以来,高端计算设施的抽象是向提交的工作分配一组专用节点。然而,这会使系统的效率大大降低,因为有更多的每个节点的资源经常被低效利用。此外,对高端系统的需求正在增加,将节点专用于作业会增加作业周转时间并降低整体系统吞吐量。解决这个问题的一种方法是让超级计算机中心打破目前的普遍做法,即为每个作业分配超级计算机的一个私有的、独立的部分。该项目的智力价值有三个方面。首先,将开发新的配置文件分析,以揭示共享节点对作业的影响。其次,将开发新的统计投影技术来预测使用共享节点的作业的缩放行为。第三,将设计新的作业级调度技术,使用干扰分析和预测来选择一组共享节点,从而获得良好的作业周转时间并最大化系统吞吐量。该项目的广泛影响是多方面的。该项目将有助于在高性能系统上实现更高的效率,这将使包括气候/天气预报、核能和国家安全在内的广泛应用受益。通过与劳伦斯·利弗莫尔和桑迪亚国家实验室的长期合作,PIS将在LLNL和SNL系统上实施和验证这些技术,并将这些技术转化为国家实验室未来的资源管理器。此外,两家私人投资机构都将通过招募拉美裔本科生参与该项目并将他们送到国家实验室实习来扩大对计算机的参与。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating the Viability of LogGP for Modeling MPI Performance with Non-contiguous Datatypes on Modern Architectures
评估 LogGP 在现代架构上使用非连续数据类型对 MPI 性能进行建模的可行性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patrick Bridges其他文献

A More Scalable Sparse Dynamic Data Exchange
更具可扩展性的稀疏动态数据交换
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Geyko;Gerald Collom;Derek Schafer;Patrick Bridges;Amanda Bienz
  • 通讯作者:
    Amanda Bienz

Patrick Bridges的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patrick Bridges', 18)}}的其他基金

CRII: SaTC: Identifying Fraud in the Cryptocurrency Ecosystem
CRII:SaTC:识别加密货币生态系统中的欺诈行为
  • 批准号:
    1849729
  • 财政年份:
    2019
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
CDS&E: Optimization of Advanced Cyberinfrastructure through Data-Driven Computational Modeling
CDS
  • 批准号:
    1807563
  • 财政年份:
    2018
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
CICI: RDP: SAMPRA: Scalable Analysis, Management, and Protection of Research Artifacts
CICI:RDP:SAMPRA:研究文物的可扩展分析、管理和保护
  • 批准号:
    1840069
  • 财政年份:
    2018
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
Student Travel Support for ACM HPDC 2017
ACM HPDC 2017 学生旅行支持
  • 批准号:
    1742957
  • 财政年份:
    2017
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
Student Travel Support for ACM HPDC 2016
ACM HPDC 2016 学生旅行支持
  • 批准号:
    1631138
  • 财政年份:
    2016
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
Collaborative Research: CRI: CRD: An Open Source Extensible Virtual Machine Monitor
协作研究:CRI:CRD:开源可扩展虚拟机监视器
  • 批准号:
    0707365
  • 财政年份:
    2007
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402947
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402946
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403088
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403090
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
  • 批准号:
    2403399
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403089
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了