Collaborative Research: Mechanisms of Catalytic Enhancement of Immobilized Lipases by Tunable Polymer Materials
合作研究:可调高分子材料增强固定化脂肪酶的催化机制
基本信息
- 批准号:2103647
- 负责人:
- 金额:$ 39.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Methods to stabilize enzymes to improve their performance in industrial processes have been pursued for decades. A promising approach combines enzymes with synthetic polymers. Attaching enzymes to synthetic materials has been shown to enhance their recyclability. This approach has also been shown to decrease enzyme denaturation in extreme environments. However, little is understood about why certain materials stabilize some enzymes but not others. The overall goal is to understand and develop design rules on how to stabilize enzymes via immobilization to complex synthetic materials. This project will also provide multi-disciplinary training for graduate, undergraduate, and high school students. Project results will feed into an annual data science capstone project.Protein stabilization can be regulated by tuning the composition of random copolymer brushes to which the protein is attached. A detailed understanding of the molecular basis of this approach is critical. This understanding will be achieved by combining functional stability measurements, single-molecule methods to quantify conformational dynamics (e.g., unfolding and re-folding rates), and atomistic molecular dynamics simulations. Using this approach, the hypothesis that the chemical properties of the brush layer and enzyme surface should be well-correlated. To systematically test this hypothesis, several closely related, but structurally diverse lipases will be used. Single-molecule Förster resonance energy transfer and simulations will be used to distinguish between possible mechanisms of stabilization. Mechanisms to be evaluated via tuning the enzyme-brush interface, will include enhanced re-folding (i.e., a chaperone-like effect) and reduced unfolding. Additionally, the salient chemical features of the brush layer that contribute to the stabilization of enzymes will be identified. This work will leverage a novel algorithm to model and identify clusters of hydrophobic atoms on protein surfaces using unsupervised machine learning. The results of this work are expected to lead to transformational advances in industrial biocatalysis. The impact may extend to other fields, including biosensing, bioremediation, and smart materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
稳定酶以改善其在工业过程中的性能的方法已经追求了几十年。一种很有前途的方法是将酶与合成聚合物结合起来。将酶附着在合成材料上已被证明可以提高其可回收性。这种方法也被证明可以减少极端环境中的酶变性。然而,很少有人知道为什么某些材料稳定某些酶,而不是其他酶。总体目标是了解和开发关于如何通过固定化到复杂合成材料来稳定酶的设计规则。 该项目还将为研究生、本科生和高中生提供多学科培训。 项目结果将被纳入年度数据科学顶点项目。蛋白质稳定性可以通过调整蛋白质附着的无规共聚物刷的组成来调节。详细了解这种方法的分子基础是至关重要的。这种理解将通过结合功能稳定性测量、单分子方法来量化构象动力学(例如,展开和重新折叠速率)以及原子分子动力学模拟。使用这种方法,假设刷层和酶表面的化学性质应该是很好的相关性。为了系统地检验这一假设,将使用几种密切相关但结构不同的脂肪酶。单分子Förster共振能量转移和模拟将用于区分可能的稳定机制。通过调节酶-刷界面来评估的机制将包括增强的重折叠(即,类伴侣效应)和减少的解折叠。此外,刷层的显着的化学特征,有助于酶的稳定将被确定。这项工作将利用一种新的算法,使用无监督机器学习来建模和识别蛋白质表面上的疏水原子簇。这项工作的结果预计将导致工业生物催化的变革性进展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Framework for Optimizing Polymeric Supports for Immobilized Biocatalysts by Computational Analysis of Enzyme Surface Hydrophobicity
通过酶表面疏水性的计算分析优化固定化生物催化剂的聚合物载体的框架
- DOI:10.1021/acscatal.3c00264
- 发表时间:2023
- 期刊:
- 影响因子:12.9
- 作者:Sánchez-Morán, Héctor;Gonçalves, Luciana Rocha;Schwartz, Daniel K.;Kaar, Joel L.
- 通讯作者:Kaar, Joel L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Kaar其他文献
Joel Kaar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Kaar', 18)}}的其他基金
Collaborative Research: Biocatalytic Alcoholysis of PET in Nonaqueous Solvents for Polymer Recycling
合作研究:PET在非水溶剂中生物催化醇解用于聚合物回收
- 批准号:
2309898 - 财政年份:2023
- 资助金额:
$ 39.15万 - 项目类别:
Standard Grant
CAREER: Rational Engineering of an Ionic Liquid Tolerant Cellulase Cocktail
职业:离子液体耐受纤维素酶混合物的合理工程
- 批准号:
1454379 - 财政年份:2015
- 资助金额:
$ 39.15万 - 项目类别:
Standard Grant
EAGER: Rational Modification of Enzyme Charge for Enhanced Biocatalyst Stability in Ionic Liquids
EAGER:合理修饰酶电荷以增强离子液体中生物催化剂的稳定性
- 批准号:
1347737 - 财政年份:2013
- 资助金额:
$ 39.15万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 39.15万 - 项目类别:
Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 39.15万 - 项目类别:
Standard Grant
Collaborative Research: Mechanisms of community coalescence in synthetic microbiomes
合作研究:合成微生物组中群落合并的机制
- 批准号:
2328529 - 财政年份:2024
- 资助金额:
$ 39.15万 - 项目类别:
Standard Grant
Collaborative Research: Mechanisms of community coalescence in synthetic microbiomes
合作研究:合成微生物组中群落合并的机制
- 批准号:
2328528 - 财政年份:2024
- 资助金额:
$ 39.15万 - 项目类别:
Standard Grant
Collaborative Research: Determining the role of uranium(V) in the global uranium cycle by characterizing burial mechanisms in marine sinks
合作研究:通过表征海洋汇埋藏机制确定铀(V)在全球铀循环中的作用
- 批准号:
2322205 - 财政年份:2024
- 资助金额:
$ 39.15万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344765 - 财政年份:2024
- 资助金额:
$ 39.15万 - 项目类别:
Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 39.15万 - 项目类别:
Standard Grant
Collaborative Research: Determining the role of uranium(V) in the global uranium cycle by characterizing burial mechanisms in marine sinks
合作研究:通过表征海洋汇埋藏机制确定铀(V)在全球铀循环中的作用
- 批准号:
2322206 - 财政年份:2024
- 资助金额:
$ 39.15万 - 项目类别:
Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319096 - 财政年份:2024
- 资助金额:
$ 39.15万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344766 - 财政年份:2024
- 资助金额:
$ 39.15万 - 项目类别:
Standard Grant














{{item.name}}会员




