Collaborative Research: Biocatalytic Alcoholysis of PET in Nonaqueous Solvents for Polymer Recycling
合作研究:PET在非水溶剂中生物催化醇解用于聚合物回收
基本信息
- 批准号:2309898
- 负责人:
- 金额:$ 37.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the accumulation of plastics in the environment being one of the most pressing societal challenges today, the development of methods to improve plastics recycling continues to grow in importance. A major challenge to plastics recycling is developing processes that are cost effective and yield polymers with properties that are identical to or better than those of the original plastic. While the use of biological catalysts for polymer recycling and upcycling has generated significant interest, research has been restricted to reactions that take place in water. Due to the limitations of water as a medium for such reactions, new approaches that improve the efficiency and conversion of plastic waste using biologically based methods are needed. The overall aim of this work is to explore the use of natural enzymes to deconstruct common single-use plastics such as polyethylene terephthalate (PET – commonly used in clothing fibers and liquid/food containers) in the absence of bulk water. This work will specifically leverage the dramatically improved properties of enzymes in “dry” environments, including the ability to catalyze a range of reactions that are not possible in aqueous media. This research will investigate enzymes that potentially can degrade PET in new ways that facilitate the repolymerization of the reaction products, which is critical for recycling. This effort will lead to a detailed understanding of the reaction parameters that impact enzyme efficiency in converting PET waste into useful, recycled plastics building blocks. This research will broaden participation in STEM research by engaging a diverse group of undergraduate and high school students in this research program. Participants will be recruited through a variety of programs, including the Summer Multicultural Access to Research Training (SMART) and STEM Routes programs at CU Boulder and Miami University. Moreover, meaningful teaching modules will be developed that can be incorporated into K-12 curricula on the biodegradation of materials and biocatalysis.The objective of this proposal is to develop a novel biocatalytic process for the deconstruction of polyethylene terephthalate (PET) plastics based on the alcoholysis of ester bonds in the polymer backbone by lipase. Of specific interest is correlating the kinetics of PET alcoholysis with the thermodynamics of the depolymerization reaction as well as the solvent properties, which enable the rate of alcoholysis to be fine-tuned. A major advantage of this approach over the hydrolysis of PET is that the use of nonaqueous media may promote swelling of the polymer, thereby increasing plasticity of the polymer chains. This in turn will increase the accessibility of the ester linkages in the polymer backbone and thus may significantly enhance the rate of biocatalytic conversion. Additionally, the use of nonaqueous solvents over water increases the ease of separation of the reaction products and can enhance the thermostability of the enzymes. These advantages potentially will eliminate the need for the high reaction temperatures as well as energy intensive pretreatment steps, such as melt extrusion and microgrinding, used in current PET recycling approaches. This work will specifically test the hypothesis that esterases can catalyze the alcoholysis of PET in nonaqueous media, and that the rate of alcoholysis can be controlled by varying the thermodynamic equilibrium water activity of the reaction as well as the solvent properties and choice of alcohol as the nucleophile. These studies will use lipase, including cutinase, as a model esterase since it is already well established that lipases can catalyze alcoholysis reactions in anhydrous media and bind to PET. Additionally, to correlate the kinetics of PET alcoholysis with the thermodynamics of the reaction, water activity will be controlled using salt hydrates. Finally, as part of this effort, rational strategies will be developed to reduce diffusional limitations of lipase in nonaqueous solvents, including ion pairing with surfactants. While this effort will focus on PET recycling, the proposed approach may be applicable in recycling of other synthetic polyesters. Moreover, the fundamental understanding of depolymerization reaction mechanisms developed by this this research program also may lead to new ways to chemically modify polyesters to improve their utility and recyclability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着塑料在环境中的积累成为当今最紧迫的社会挑战之一,开发提高塑料回收利用的方法变得越来越重要。塑料回收的一个主要挑战是开发具有成本效益的工艺,并产生与原始塑料相同或更好的聚合物。虽然使用生物催化剂进行聚合物回收和升级利用已经引起了极大的兴趣,但研究仅限于在水中发生的反应。由于水作为这种反应介质的局限性,需要使用基于生物的方法来提高塑料废物的效率和转化的新方法。这项工作的总体目标是探索在没有散装水的情况下,使用天然酶来解构常见的一次性塑料,如聚对苯二甲酸乙二醇酯(PET -通常用于服装纤维和液体/食品容器)。这项工作将特别利用酶在“干燥”环境中显著改善的特性,包括催化一系列在水介质中不可能发生的反应的能力。这项研究将研究可能以新方式降解PET的酶,这些方法有助于反应产物的再聚合,这对回收利用至关重要。这一努力将导致对影响酶效率的反应参数的详细了解,这些酶将PET废物转化为有用的再生塑料积木。这项研究将通过吸引不同群体的本科生和高中生参与这项研究计划,扩大STEM研究的参与。参与者将通过各种项目招募,包括科罗拉多大学博尔德分校和迈阿密大学的夏季多元文化研究培训(SMART)和STEM路线项目。此外,将开发有意义的教学模块,这些模块可纳入K-12课程,内容涉及材料的生物降解和生物催化。本提案的目的是开发一种基于脂肪酶醇解聚合物主链中的酯键的新型生物催化过程来分解聚对苯二甲酸乙二醇酯(PET)塑料。特别感兴趣的是将PET醇解动力学与解聚反应的热力学以及溶剂性质联系起来,这使得醇解速率可以微调。与PET水解相比,这种方法的一个主要优点是使用非水介质可以促进聚合物的膨胀,从而增加聚合物链的可塑性。这反过来又会增加聚合物主链中酯键的可及性,从而可能显著提高生物催化转化的速率。此外,在水上面使用非水溶剂增加了反应产物分离的便利性,并且可以增强酶的热稳定性。这些优点可能会消除当前PET回收方法中对高反应温度和高能耗预处理步骤的需求,例如熔体挤压和微研磨。这项工作将专门验证酯酶可以催化PET在非水介质中醇解的假设,醇解的速率可以通过改变反应的热力学平衡水活度以及溶剂性质和醇作为亲核试剂的选择来控制。这些研究将使用包括角质酶在内的脂肪酶作为模型酯酶,因为脂肪酶可以在无水介质中催化醇解反应并与PET结合。此外,为了将PET醇解的动力学与反应的热力学联系起来,将使用盐水合物控制水的活度。最后,作为这项工作的一部分,将制定合理的策略来减少脂肪酶在非水溶剂中的扩散限制,包括与表面活性剂的离子配对。虽然这项工作将侧重于PET回收,但所提出的方法可能适用于其他合成聚酯的回收。此外,本研究项目对解聚反应机理的基本理解也可能导致化学改性聚酯的新方法,以提高其实用性和可回收性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Kaar其他文献
Joel Kaar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Kaar', 18)}}的其他基金
Collaborative Research: Mechanisms of Catalytic Enhancement of Immobilized Lipases by Tunable Polymer Materials
合作研究:可调高分子材料增强固定化脂肪酶的催化机制
- 批准号:
2103647 - 财政年份:2021
- 资助金额:
$ 37.87万 - 项目类别:
Standard Grant
CAREER: Rational Engineering of an Ionic Liquid Tolerant Cellulase Cocktail
职业:离子液体耐受纤维素酶混合物的合理工程
- 批准号:
1454379 - 财政年份:2015
- 资助金额:
$ 37.87万 - 项目类别:
Standard Grant
EAGER: Rational Modification of Enzyme Charge for Enhanced Biocatalyst Stability in Ionic Liquids
EAGER:合理修饰酶电荷以增强离子液体中生物催化剂的稳定性
- 批准号:
1347737 - 财政年份:2013
- 资助金额:
$ 37.87万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 37.87万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 37.87万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 37.87万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 37.87万 - 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 37.87万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 37.87万 - 项目类别:
Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
- 批准号:
EP/Y031962/1 - 财政年份:2024
- 资助金额:
$ 37.87万 - 项目类别:
Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
- 批准号:
EP/Y033124/1 - 财政年份:2024
- 资助金额:
$ 37.87万 - 项目类别:
Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 37.87万 - 项目类别:
Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
- 批准号:
NE/Y005457/1 - 财政年份:2024
- 资助金额:
$ 37.87万 - 项目类别:
Training Grant