Elements: Collaborative Research: Community-driven Environment of AI-powered Noise Reduction Services for Materials Discovery from Electron Microscopy Data

要素:协作研究:社区驱动的人工智能降噪服务环境,用于从电子显微镜数据中发现材料

基本信息

  • 批准号:
    2103936
  • 负责人:
  • 金额:
    $ 29.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The goal of this project is to create cyberinfrastructure (CI) powered by artificial intelligence (AI) for sustained innovation in materials science. Deep understanding of materials is critical for progress in technologies related to energy, communication, construction, transportation and human health. The revolutionary progress of deep learning has been enabled by the availability of open-source AI models and open-access benchmark databases. However, the existing codebases and datasets relevant to image processing focus mostly on photographic images. In order to promote the sustained development of AI technology that can have significant impact in materials science, it is critical to provide data and AI models that are tailored to this domain. The developed CI will address this need by providing software to process images obtained from electron-microscopes, a technique enabling atoms to be visualized, and has the potential to enable transformative breakthroughs in varied and important areas of materials science. The CI is explicitly designed to foster the growth of a sustainable community of users and developers of AI technology at the intersection of the materials and data science communities, and to empower materials scientists to simulate their own datasets and develop their own AI models for scientific discovery. The developed AI-powered CI will therefore enable transformative progress in atomic-level understanding of materials, which will have broader impacts in health, energy, environment, and biotechnology. The CI environment will contribute to training materials scientists in AI technology, connecting them to the AI community, and providing software, data, and support materials to initiate them in AI-powered research. Educational and outreach plans are designed to facilitate interactions between the materials science and AI communities. Outreach activities specifically targeted to the general public, and to high-school teachers and their students, will expose them to materials science, electron microscopy, and AI. The project is committed to providing opportunities to women and underrepresented groups and will prioritize diversity in collaboration with the NYU Center for Data Science diversity committee.Developing a fundamental understanding of atomic level structure and dynamics is critical for transformative advances in materials science. Aberration-corrected transmission electron microscopy is a primary tool to accomplish this goal. Unfortunately, the information content of microscopy data may be severely limited by poor signal-to-noise ratios. This is particularly true for radiation sensitive materials and experiments where high time resolution is required to investigate dynamic kinetic processes. AI methodology can exploit prior information about material structure by training deep neural nets with extensive simulations. These approaches may significantly outperform existing state-of-the-art methods, especially for non-periodic structures, including defects, interfaces, and surfaces. The developed CI will provide AI noise reduction services which will yield immediate advances and impacts for zeolites, metal organic frameworks, protein-material interfaces, liquid phase nucleation and growth, liquid-solid interfaces, and fluxional behavior in catalytic nanoparticles. In addition, the project will advance methodology for the design of AI-oriented CI. The CI is strategically designed to create a holistic environment for the use and development of AI technology in a specific scientific domain. It will attract domain scientists with little AI expertise, by providing software where the AI technology is transparent to the end user. Exposure to the technology will motivate the scientific community to design and train their own models, which will be facilitated by the open-source codebase in the AI repository. The open-access database combined with the repository will attract AI practitioners with little domain expertise, by giving them access to well-curated data and a clear specification of the relevant AI tasks. These services will be jump-started and supported through multiple educational and outreach activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是创建由人工智能(AI)驱动的网络基础设施(CI),以实现材料科学的持续创新。对材料的深入了解对于能源、通信、建筑、交通和人类健康相关技术的进步至关重要。深度学习的革命性进展得益于开源AI模型和开放访问基准数据库的可用性。然而,现有的图像处理相关的代码库和数据集主要集中在摄影图像上。为了促进能够对材料科学产生重大影响的人工智能技术的持续发展,提供针对该领域的数据和人工智能模型至关重要。开发的CI将通过提供软件来处理从电子显微镜获得的图像来满足这一需求,这是一种使原子可视化的技术,并有可能在材料科学的各种重要领域实现变革性突破。CI旨在促进材料和数据科学社区交叉处的人工智能技术用户和开发人员的可持续社区的发展,并使材料科学家能够模拟自己的数据集并开发自己的人工智能模型以进行科学发现。因此,开发的人工智能人工智能将在原子级理解材料方面取得变革性进展,这将对健康,能源,环境和生物技术产生更广泛的影响。CI环境将有助于培训人工智能技术的材料科学家,将他们与人工智能社区联系起来,并提供软件,数据和支持材料,以启动人工智能驱动的研究。教育和推广计划旨在促进材料科学和人工智能社区之间的互动。专门针对普通公众和高中教师及其学生的外展活动将使他们接触材料科学,电子显微镜和人工智能。该项目致力于为妇女和代表性不足的群体提供机会,并将与纽约大学数据科学中心多样性委员会合作,优先考虑多样性。发展对原子水平结构和动力学的基本理解对于材料科学的变革性进步至关重要。像差校正透射电子显微镜是实现这一目标的主要工具。不幸的是,显微镜数据的信息内容可能会受到严重限制的信号噪声比差。这是特别真实的辐射敏感材料和实验,需要高的时间分辨率来研究动态动力学过程。人工智能方法可以通过大量模拟训练深度神经网络来利用有关材料结构的先验信息。这些方法可以显著优于现有的最先进的方法,特别是对于非周期性结构,包括缺陷,界面和表面。开发的CI将提供AI降噪服务,这将对沸石,金属有机框架,蛋白质材料界面,液相成核和生长,液固界面以及催化纳米颗粒中的流动行为产生直接的进步和影响。此外,该项目将推进面向AI的CI设计方法。CI的战略设计旨在为特定科学领域人工智能技术的使用和开发创造一个整体环境。它将通过提供AI技术对最终用户透明的软件来吸引几乎没有AI专业知识的领域科学家。接触该技术将激励科学界设计和训练自己的模型,这将由AI存储库中的开源代码库提供便利。开放访问数据库与存储库相结合,将吸引几乎没有领域专业知识的人工智能从业者,让他们能够访问精心策划的数据和相关人工智能任务的明确规范。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive Denoising via GainTuning
  • DOI:
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Mohan;Joshua L. Vincent;R. Manzorro;P. Crozier;Eero P. Simoncelli;C. Fernandez‐Granda
  • 通讯作者:
    S. Mohan;Joshua L. Vincent;R. Manzorro;P. Crozier;Eero P. Simoncelli;C. Fernandez‐Granda
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Fernandez Granda其他文献

Carlos Fernandez Granda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Fernandez Granda', 18)}}的其他基金

Mathematical Analysis of Super-Resolution via Nonconvex Optimization and Machine Learning
通过非凸优化和机器学习进行超分辨率数学分析
  • 批准号:
    2009752
  • 财政年份:
    2020
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Atomic Level Structural Dynamics in Catalysts
合作研究:催化剂中的原子级结构动力学
  • 批准号:
    1940097
  • 财政年份:
    2019
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant
An optimization-based framework for deconvolution: theoretical guarantees and practical algorithms
基于优化的反卷积框架:理论保证和实用算法
  • 批准号:
    1616340
  • 财政年份:
    2016
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Elements: VLCC-States: Versioned Lineage-Driven Checkpointing of Composable States
协作研究:元素:VLCC-States:可组合状态的版本化谱系驱动检查点
  • 批准号:
    2411387
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311092
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Lattice QCD software for nuclear physics on heterogeneous architectures
合作研究:Elements:用于异构架构核物理的 Lattice QCD 软件
  • 批准号:
    2311430
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311757
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329189
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246686
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311091
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Phonon Database Generation, Analysis, and Visualization for Data Driven Materials Discovery
协作研究:要素:数据驱动材料发现的声子数据库生成、分析和可视化
  • 批准号:
    2311202
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Enabling Particle and Nuclear Physics Discoveries with Neural Deconvolution
合作研究:元素:通过神经反卷积实现粒子和核物理发现
  • 批准号:
    2311667
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246687
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了