Mathematical Analysis of Super-Resolution via Nonconvex Optimization and Machine Learning
通过非凸优化和机器学习进行超分辨率数学分析
基本信息
- 批准号:2009752
- 负责人:
- 金额:$ 34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Diffraction imposes a fundamental limit on the resolution of optical systems. Consequently, in fields such as microscopy, astronomy, and medical imaging, it is often challenging to discern cellular structures, far-away stars, or tumours from the available measurements. The issue also arises in electronic imaging, where shot noise constrains the minimum pixel size, and in other applications, including signal processing, spectroscopy, radar, and seismology. The goal of super-resolution is to meet this challenge, uncovering fine-scale structure from coarse-scale data. In this project the investigators will analyze super-resolution techniques, design new methodology based on the resulting insights, and apply the methodology to fluorescence microscopy, which has become an essential imaging tool in biology. The proposed integrated program of educational and research activities will impact workforce development by training students at the intersection of data science, signal processing, and machine learning. This will contribute to address the rising demand for data scientists and engineers in industry and academia.Modern super-resolution techniques based on nonconvex optimization provide model flexibility, computational efficiency, and yield good empirical results. However, theoretical analysis showing under what conditions these techniques are guaranteed to work, or may fail, is lacking. In addition, recent works show that learning-based methods based on neural networks can be trained to perform super-resolution effectively and efficiently. Calibrating these models requires minimizing a highly nonconvex cost function. The proposed research activities will advance the theoretical underpinnings of nonconvex optimization for super-resolution and related problems such as line-spectra estimation and blind deconvolution. The project will focus on the super-resolution of point sources, which may represent fluorescent particles in microscopy, astral bodies in astronomy, spectral lines in signal processing, or neuron action potentials in neuroscience. The investigators will perform a mathematical analysis of the geometric landscapes that arise when using nonconvex cost functions to fit point sources, and also study the properties of learning-based approaches when deployed on point-source signal models. To complement their theoretical investigations, they will apply these techniques to real fluorescence-microscopy data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
衍射对光学系统的分辨率施加了基本的限制。因此,在显微镜、天文学和医学成像等领域,从现有的测量结果中辨别细胞结构、遥远的恒星或肿瘤通常是具有挑战性的。这个问题也出现在电子成像中,其中散粒噪声限制了最小像素尺寸,以及其他应用,包括信号处理,光谱学,雷达和地震学。超分辨率的目标就是应对这一挑战,从粗尺度数据中揭示细尺度结构。在这个项目中,研究人员将分析超分辨率技术,根据所得的见解设计新的方法,并将该方法应用于荧光显微镜,这已成为生物学中必不可少的成像工具。拟议的教育和研究活动综合计划将通过在数据科学,信号处理和机器学习的交叉点培训学生来影响劳动力发展。这将有助于满足工业界和学术界对数据科学家和工程师不断增长的需求。基于非凸优化的现代超分辨率技术提供了模型灵活性、计算效率,并产生了良好的经验结果。然而,理论分析表明,在什么条件下,这些技术是保证工作,或可能失败,是缺乏的。此外,最近的工作表明,基于神经网络的学习方法可以被训练成有效和高效地执行超分辨率。校准这些模型需要最小化一个高度非凸的成本函数。这些研究工作将为超分辨率非凸优化及相关问题如线性谱估计和盲反卷积提供理论基础。该项目将专注于点源的超分辨率,这可能代表显微镜中的荧光粒子,天文学中的星体,信号处理中的光谱线或神经科学中的神经元动作电位。研究人员将对使用非凸成本函数拟合点源时出现的几何景观进行数学分析,并研究基于学习的方法在点源信号模型上部署时的特性。为了补充他们的理论研究,他们将把这些技术应用到真实的荧光显微镜数据中。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为是值得支持的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive Early-Learning Correction for Segmentation from Noisy Annotations
- DOI:10.1109/cvpr52688.2022.00263
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Sheng Liu;Kangning Liu;Weicheng Zhu;Yiqiu Shen;C. Fernandez‐Granda
- 通讯作者:Sheng Liu;Kangning Liu;Weicheng Zhu;Yiqiu Shen;C. Fernandez‐Granda
Avoiding spurious correlations via logit correction
- DOI:10.48550/arxiv.2212.01433
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Sheng Liu;Xu Zhang-;Nitesh Sekhar;Yue Wu;Prateek Singhal;C. Fernandez‐Granda
- 通讯作者:Sheng Liu;Xu Zhang-;Nitesh Sekhar;Yue Wu;Prateek Singhal;C. Fernandez‐Granda
Adaptive Test Allocation for Outbreak Detection and Tracking in Social Contact Networks
用于社交联系网络中爆发检测和跟踪的自适应测试分配
- DOI:10.1137/20m1377874
- 发表时间:2022
- 期刊:
- 影响因子:2.2
- 作者:Batlle, Pau;Bruna, Joan;Fernandez-Granda, Carlos;Preciado, Victor M.
- 通讯作者:Preciado, Victor M.
Convolutional Normalization: Improving Deep Convolutional Network Robustness and Training
- DOI:
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Sheng Liu;Xiao Li;Yuexiang Zhai;Chong You;Zhihui Zhu;C. Fernandez‐Granda;Qing Qu
- 通讯作者:Sheng Liu;Xiao Li;Yuexiang Zhai;Chong You;Zhihui Zhu;C. Fernandez‐Granda;Qing Qu
Benchmarking of Machine Learning Ocean Subgrid Parameterizations in an Idealized Model
- DOI:10.1029/2022ms003258
- 发表时间:2022-12
- 期刊:
- 影响因子:6.8
- 作者:Andrew Ross;Ziwei Li;P. Perezhogin;C. Fernandez‐Granda;L. Zanna
- 通讯作者:Andrew Ross;Ziwei Li;P. Perezhogin;C. Fernandez‐Granda;L. Zanna
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Fernandez Granda其他文献
Carlos Fernandez Granda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Fernandez Granda', 18)}}的其他基金
Elements: Collaborative Research: Community-driven Environment of AI-powered Noise Reduction Services for Materials Discovery from Electron Microscopy Data
要素:协作研究:社区驱动的人工智能降噪服务环境,用于从电子显微镜数据中发现材料
- 批准号:
2103936 - 财政年份:2021
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: Atomic Level Structural Dynamics in Catalysts
合作研究:催化剂中的原子级结构动力学
- 批准号:
1940097 - 财政年份:2019
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
An optimization-based framework for deconvolution: theoretical guarantees and practical algorithms
基于优化的反卷积框架:理论保证和实用算法
- 批准号:
1616340 - 财政年份:2016
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
A study of super-parallel data analysis method for CMB polarimetric observations to improve the sensitivity of inflation detection
CMB极化观测超并行数据分析方法提高暴胀检测灵敏度的研究
- 批准号:
23KJ1602 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Theoretical and Empirical Studies on the Survival and Decline of Firms: A Comparative Analysis of Super-Longevity (Shinise) Firms and Longevity (Shinise) Firms
企业生存与衰落的理论与实证研究:超长寿企业与长寿企业的比较分析
- 批准号:
23H00849 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterization of super adhesive aerosols on the basis of individual particle analysis using atomic force microscopy
基于原子力显微镜单个颗粒分析的超粘性气溶胶表征
- 批准号:
22KJ1464 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Study of rain fall based on super-droplet method and hierarchical Lagrangian analysis
基于超液滴法和分层拉格朗日分析的降雨研究
- 批准号:
23K03265 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Measurement and analysis on yhe change in dislocation densuty at high temperatuire deformation of 3D additively manufactured Ni super alloy and carcon steelsmanufactured
3D增材制造镍基高温合金和碳钢高温变形时位错密度变化的测量与分析
- 批准号:
22K04674 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Super-resolution imaging, single cell analysis, and modelling approaches applied to the study of immune cell signaling and behaviour
超分辨率成像、单细胞分析和建模方法应用于免疫细胞信号传导和行为的研究
- 批准号:
RGPIN-2020-04820 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Discovery Grants Program - Individual
Parallel size analysis and biomarker profiling of extracellular vesicles by single-vesicle super-resolution fluorescence microscopy
通过单囊泡超分辨率荧光显微镜对细胞外囊泡进行平行尺寸分析和生物标志物分析
- 批准号:
575325-2022 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Analysis of bacterial membrane vesicle biogenesis with super-resolution imaging
用超分辨率成像分析细菌膜囊泡的生物发生
- 批准号:
19KK0394 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Analysis of lipid domains around receptor tyrosine kinases by super-resolution microscopy
通过超分辨率显微镜分析受体酪氨酸激酶周围的脂质结构域
- 批准号:
22K06609 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a novel deep 3D super-resolution observation method for living organisms by spatiotemporal fluorescence correlation analysis
利用时空荧光相关分析建立生物体深度3D超分辨观测新方法
- 批准号:
22K14578 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists