Collaborative Research: Elements: ROCCI: Integrated Cyberinfrastructure for In Situ Lossy Compression Optimization Based on Post Hoc Analysis Requirements

合作研究:要素:ROCCI:基于事后分析要求的原位有损压缩优化的集成网络基础设施

基本信息

  • 批准号:
    2104023
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Today’s simulations and advanced instruments are producing vast volumes of data, presenting a major storage and I/O burden for scientists. Error-bounded lossy compressors, which can significantly reduce the data volume while controlling data distortion with a constant error bound, have been developed for years. However, a significant gap still remains in practice. On the one hand, the impact of the compression errors on scientific research is not well understood, so how to set an appropriate error bound for lossy compression is very challenging. On the other hand, how to select the best fit compression technology and run it automatically in scientific application codes is non-trivial because of strengths and weaknesses of different compression techniques and diverse characteristics of applications and datasets. This project aims to develop a Requirement-Oriented Compression Cyber-Infrastructure (ROCCI) for data-intensive domains such as astrophysics and materials science, which can select and run the best fit lossy compressor automatically at runtime, in terms of user's requirement on their post hoc analysis.The overarching goal of this project is to offer a complete series of automatic functions and services allowing users to transparently run the best fit compressor at runtime during the scientific simulations or data acquisition. This project advances knowledge and understanding with three key thrusts: (1) it builds an efficient layer to interoperate with different lossy compressors and diverse post hoc analysis requirements on data fidelity by leveraging an existing compression adaptor library (LibPressio) and compression assessment library (Z-checker); (2) it develops an efficient engine to determine the best fit compressor with optimized settings based on user’s post-hoc analysis requirements; and (3) it develops a user-friendly infrastructure that integrates compression optimization and execution via the HDF5 dynamic filter mechanism. This project particularly targets cosmology and materials science applications and their specific requirements of using lossy compressors in practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
今天的模拟和先进仪器产生了大量的数据,给科学家带来了巨大的存储和I/O负担。误差有界有损压缩器是近年来发展起来的一种压缩器,它可以在保持恒定误差界的情况下,有效地减少数据量,同时控制数据失真。然而,在实践中仍然存在很大差距。一方面,压缩误差对科学研究的影响还没有得到很好的理解,因此如何为有损压缩设置合适的误差范围是非常具有挑战性的。另一方面,如何选择最适合的压缩技术并在科学应用代码中自动运行它是不平凡的,因为不同压缩技术的优点和缺点以及应用程序和数据集的不同特征。该项目旨在为天体物理学和材料科学等数据密集型领域开发一个面向有损压缩的网络基础设施(ROCCI),它可以在运行时自动选择和运行最适合的有损压缩器,该项目的总体目标是提供一系列完整的自动化功能和服务,允许用户透明地运行最适合的在科学模拟或数据采集过程中,压缩机在运行时运行。该项目通过以下三个关键点推进知识和理解:(1)通过利用现有的压缩适配器库,构建了一个有效的层,以与不同的有损压缩器和对数据保真度的各种事后分析需求进行互操作(LibPressio)和压缩评估库(2)它开发了一个有效的引擎,以基于用户的事后分析要求确定具有优化设置的最佳匹配压缩机;以及(3)它开发了一个用户友好的基础设施,该基础设施通过HDF 5动态过滤器机制集成了压缩优化和执行。该项目特别针对宇宙学和材料科学应用及其在实践中使用有损压缩机的具体要求。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving Prediction-Based Lossy Compression Dramatically via Ratio-Quality Modeling
通过比率质量建模显着改进基于预测的有损压缩
OptZConfig: Efficient Parallel Optimization of Lossy Compression Configuration
OptZConfig:有损压缩配置的高效并行优化
Optimizing Scientific Data Transfer on Globus with Error-bounded Lossy Compression
通过误差有限有损压缩优化 Globus 上的科学数据传输
Ultrafast Error-Bounded Lossy Compression for Scientific Datasets
科学数据集的超快误差限制有损压缩
Dynamic Quality Metric Oriented Error Bounded Lossy Compression for Scientific Datasets
科学数据集的动态质量度量导向误差有损压缩
  • DOI:
    10.1109/sc41404.2022.00067
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Jinyang;Di, Sheng;Zhao, Kai;Liang, Xin;Chen, Zizhong;Cappello, Franck
  • 通讯作者:
    Cappello, Franck
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheng Di其他文献

ACStor: Optimizing Access Performance of Virtual Disk Images in Clouds
ACStor:优化云中虚拟磁盘镜像的访问性能
Performance Optimization for Relative-Error-Bounded Lossy Compression on Scientific Data
科学数据的相对误差有限有损压缩的性能优化
  • DOI:
    10.1109/tpds.2020.2972548
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Xiangyu Zou;Tao Lu;Wen Xia;Xuan Wang;Weizhe Zhang;Haijun Zhang;Sheng Di;Dingwen Tao;Franck Cappello
  • 通讯作者:
    Franck Cappello
Multifacets of lossy compression for scientific data in the Joint-Laboratory of Extreme Scale Computing
超大规模计算联合实验室科学数据有损压缩的多方面
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Franck Cappello;Sheng Di;Robert Underwood;Dingwen Tao;Jon Calhoun;Yoshii Kazutomo;Kento Sato;Amarjit Singh;Luc Giraud;Emmanuel Agullo;Xavier Yepes;Mario Acosta;Sian Jin;Jiannan Tian;Frédéric Vivien;Bo Zhang;Kentaro Sano;Tomohiro Ueno;Thomas Grützmacher;H. Anzt
  • 通讯作者:
    H. Anzt
Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model
Frog:使用混合着色模型在 GPU 上进行异步图形处理
Towards Optimized Fine-Grained Pricing of IaaS Cloud Platform
迈向IaaS云平台优化细粒度定价
  • DOI:
    10.1109/tcc.2014.2344680
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Hai Jin;Xinhou Wang;Song Wu;Sheng Di;Xuanhua Shi
  • 通讯作者:
    Xuanhua Shi

Sheng Di的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sheng Di', 18)}}的其他基金

CDS&E: Collaborative Research: HyLoC: Objective-driven Adaptive Hybrid Lossy Compression Framework for Extreme-Scale Scientific Applications
CDS
  • 批准号:
    2003709
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Elements: VLCC-States: Versioned Lineage-Driven Checkpointing of Composable States
协作研究:元素:VLCC-States:可组合状态的版本化谱系驱动检查点
  • 批准号:
    2411387
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311092
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Lattice QCD software for nuclear physics on heterogeneous architectures
合作研究:Elements:用于异构架构核物理的 Lattice QCD 软件
  • 批准号:
    2311430
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311757
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329189
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246686
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246687
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO-CM: The occurrences of the rare earth elements in highly weathered sedimentary rocks, Georgia kaolins.
合作研究:GEO-CM:强风化沉积岩、乔治亚高岭土中稀土元素的出现。
  • 批准号:
    2327660
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329192
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311091
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了