CDS&E: Collaborative Research: HyLoC: Objective-driven Adaptive Hybrid Lossy Compression Framework for Extreme-Scale Scientific Applications

CDS

基本信息

  • 批准号:
    2003709
  • 负责人:
  • 金额:
    $ 25.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Today's extreme-scale scientific simulations and instruments are producing huge amounts of data that cannot be transmitted or stored effectively. Lossy compression, a data compression approach leading to certain data distortion, has been considered as a promising solution, because it can significantly reduce the data size while maintaining high data fidelity. However, the existing lossy compression methods may not always work effectively on all datasets used in specific applications because of their distinct and diverse characteristics. Moreover, the user objectives in compression quality and performance may vary with applications, datasets or circumstances. This project aims to develop a hybrid lossy compression framework to automatically construct the best-fit compression for diverse user objectives in data-intensive scientific research. Educational and engagement activities are provided to develop new curriculum related to scientific data compression and promote research collaborations with national laboratories.Designing an efficient, adaptive, hybrid framework that can always choose the best-fit compression strategy is nontrivial, since existing state-of-the-art lossy compression methods are developed with distinct principles. The project has a three-stage research plan. First, the project decouples the state-of-the-art error-bounded lossy compression approaches into multiple stages and effectively models the working efficiency (e.g., compression ratio, error, speed) of particular approaches in each stage. Second, the project develops a loosely-coupled framework to aggregate the decoupled compression stages together and also explores as many compression pipelines composed of different stages as possible, to optimize the classic compression efficiency, including compression quality and performance. Third, the project optimizes the synthetic data-movement performance regarding the external devices and resources, such as I/O performance. The team evaluates the proposed framework on multiple extreme-scale scientific applications, including cosmological simulations, light source instrument data analytics, quantum circuit simulations, and climate simulations. The project may create technologies that can increase the storage availability and improve the performance for extreme-scale scientific applications, opening opportunities for new discoveries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
今天的极端规模的科学模拟和仪器正在产生大量无法有效传输或存储的数据。有损压缩是一种会导致数据失真的数据压缩方法,它可以在保持数据保真度的同时显著减小数据量,因此被认为是一种很有前途的解决方案。然而,现有的有损压缩方法可能并不总是有效地工作在特定应用中使用的所有数据集,因为它们的独特和多样的特性。此外,压缩质量和性能方面的用户目标可能会因应用程序、数据集或环境而异。该项目旨在开发一个混合有损压缩框架,以自动构建最适合数据密集型科学研究中不同用户目标的压缩。提供教育和参与活动,以开发与科学数据压缩相关的新课程,并促进与国家实验室的研究合作。设计一个高效,自适应,混合框架,始终可以选择最适合的压缩策略是不平凡的,因为现有的最先进的有损压缩方法是根据不同的原则开发的。该项目有三个阶段的研究计划。首先,该项目将最先进的误差有界有损压缩方法分为多个阶段,并有效地模拟了工作效率(例如,压缩比、误差、速度)。其次,该项目开发了一个松散耦合的框架,将解耦的压缩阶段聚合在一起,并探索尽可能多的由不同阶段组成的压缩管道,以优化经典的压缩效率,包括压缩质量和性能。第三,该项目优化了与外部设备和资源相关的合成数据移动性能,例如I/O性能。该团队评估了多个极端规模科学应用的拟议框架,包括宇宙学模拟,光源仪器数据分析,量子电路模拟和气候模拟。该项目可能会创造出能够提高存储可用性并改善极端规模科学应用性能的技术,为新发现创造机会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving Prediction-Based Lossy Compression Dramatically via Ratio-Quality Modeling
通过比率质量建模显着改进基于预测的有损压缩
Ultrafast Error-Bounded Lossy Compression for Scientific Datasets
科学数据集的超快误差限制有损压缩
Dynamic Quality Metric Oriented Error Bounded Lossy Compression for Scientific Datasets
科学数据集的动态质量度量导向误差有损压缩
  • DOI:
    10.1109/sc41404.2022.00067
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Jinyang;Di, Sheng;Zhao, Kai;Liang, Xin;Chen, Zizhong;Cappello, Franck
  • 通讯作者:
    Cappello, Franck
A Feature-Driven Fixed-Ratio Lossy Compression Framework for Real-World Scientific Datasets
Toward Quantity-of-Interest Preserving Lossy Compression for Scientific Data
  • DOI:
    10.14778/3574245.3574255
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pu Jiao;S. Di;Hanqi Guo;Kai Zhao;Jiannan Tian;Dingwen Tao;Xin Liang;F. Cappello
  • 通讯作者:
    Pu Jiao;S. Di;Hanqi Guo;Kai Zhao;Jiannan Tian;Dingwen Tao;Xin Liang;F. Cappello
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheng Di其他文献

ACStor: Optimizing Access Performance of Virtual Disk Images in Clouds
ACStor:优化云中虚拟磁盘镜像的访问性能
Performance Optimization for Relative-Error-Bounded Lossy Compression on Scientific Data
科学数据的相对误差有限有损压缩的性能优化
  • DOI:
    10.1109/tpds.2020.2972548
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Xiangyu Zou;Tao Lu;Wen Xia;Xuan Wang;Weizhe Zhang;Haijun Zhang;Sheng Di;Dingwen Tao;Franck Cappello
  • 通讯作者:
    Franck Cappello
Multifacets of lossy compression for scientific data in the Joint-Laboratory of Extreme Scale Computing
超大规模计算联合实验室科学数据有损压缩的多方面
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Franck Cappello;Sheng Di;Robert Underwood;Dingwen Tao;Jon Calhoun;Yoshii Kazutomo;Kento Sato;Amarjit Singh;Luc Giraud;Emmanuel Agullo;Xavier Yepes;Mario Acosta;Sian Jin;Jiannan Tian;Frédéric Vivien;Bo Zhang;Kentaro Sano;Tomohiro Ueno;Thomas Grützmacher;H. Anzt
  • 通讯作者:
    H. Anzt
Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model
Frog:使用混合着色模型在 GPU 上进行异步图形处理
Towards Optimized Fine-Grained Pricing of IaaS Cloud Platform
迈向IaaS云平台优化细粒度定价
  • DOI:
    10.1109/tcc.2014.2344680
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Hai Jin;Xinhou Wang;Song Wu;Sheng Di;Xuanhua Shi
  • 通讯作者:
    Xuanhua Shi

Sheng Di的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sheng Di', 18)}}的其他基金

Collaborative Research: Elements: ROCCI: Integrated Cyberinfrastructure for In Situ Lossy Compression Optimization Based on Post Hoc Analysis Requirements
合作研究:要素:ROCCI:基于事后分析要求的原位有损压缩优化的集成网络基础设施
  • 批准号:
    2104023
  • 财政年份:
    2021
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
  • 批准号:
    2335762
  • 财政年份:
    2024
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
  • 批准号:
    2336132
  • 财政年份:
    2024
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
  • 批准号:
    2338394
  • 财政年份:
    2024
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
  • 批准号:
    2325380
  • 财政年份:
    2024
  • 资助金额:
    $ 25.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了