CRII:OAC:A Data-Driven Closed-Loop Platform for Optimal Design of Deployable Pin-Jointed Structures

CRII:OAC:用于可展开销接结构优化设计的数据驱动闭环平台

基本信息

  • 批准号:
    2104237
  • 负责人:
  • 金额:
    $ 17.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Deployable pin-jointed (DPJ) structures, due to their being lightweight, foldable, and having high stiffness, have shown high research and development interest in state-of-the-art applications in many fields, such as aerospace and mechanical engineering, civil engineering, robotics and bio-medical materials. A DPJ structure is composed of members in compression (usually bars or struts) and tension (usually cables or tendons), connected by pin joints. In operation, these DPJ structures have various performance requirements, such as maintaining a high level of surface accuracy, and achieving desired stiffness and tunable natural frequencies. Loss of desired performance often yields malfunction or even breakdown of a DPJ structure. However, optimal design of DPJ structures with the desired performance is hard to obtain, due to issues related to constitutive modeling and lack of design tools. This project addresses these problems by creating a data-driven closed-loop platform for optimal design of DPJ structures. A series of data-driven tools, that create the proposed closed-loop platform, will be designed and built: (1) a novel stochastic method for determining an initial equilibrium configuration of a DJP structure will be created; and, (2) a new computational modeling technique for DPJ structures, based on machine learning and advanced nondestructive testing, will be developed. The project will address an urgent need in structural engineering, and provide a deeper understanding of the design and computational modeling of DPJ structures. The results obtained from this project can help enhance the performance, safety and longevity of a class of structures in various areas, including architectures, spacecraft, military equipment and high-tech devices. The project will complement efforts to build the next-generation advanced cyberinfrastructure ecosystem by developing a series of data-driven tools to facilitate numerical and high-performance scientific computing, and expand modeling and simulation capabilities for mechanics of solid and structures. The project will also help upgrade the curriculum on computational modeling of structures. Engineering students will be recruited and mentored in this project. The training for students will include structural design, computational modeling, algorithm development and experimental testing.Traditional structural design is an open-loop protocol, in which a design-modeling-validation procedure is followed. The main objective of this project is to create a data-driven closed-loop platform for optimal design of DPJ structures. This frame-invariant platform is new in providing a closed-loop structural design protocol. In this platform, experimental results will not only be used for model validation, but also in turn serve to provide training and testing data to further improve performance of a data-driven computational model. The loop will then be closed by using the computational model to guide initial structural design. Toward this goal, two tasks will be carried out. The first task is to develop a stochastic approach to form finding. Traditional methods for form finding of DPJ structures require member grouping, which relies highly on the geometric simplicity of the structure. To resolve this issue, a new method, called the stochastic fixed nodal position method, will be designed and investigated. The key benefit of this method is that it does not use member grouping or require any geometric simplicity. These features will allow the method to serve as a powerful tool in design of large-scale, complex, and irregular DPJ structures. The second task is to develop a data-driven computational modeling technique. Constitutive modeling techniques often over-simplify a DPJ structure, which results in the failure to reflect important mechanical properties of the structure. Very few recently developed techniques for computational modeling are suitable to DPJ structures, due to their special characteristics that are not commonly seen in other solids or structures. This project will develop a novel computational modeling technique based on machine learning and non-destructive testing for DPJ structures. This technique will bypass traditional constitutive modeling and provide good performance in handling DPJ structures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可展开的针节结构(DPJ)由于其重量轻、可折叠和刚度高,在航空航天和机械工程、土木工程、机器人和生物医学材料等许多领域的最新应用中表现出了很高的研究和开发兴趣。DPJ结构由受压构件(通常是杆或支柱)和受压构件(通常是索或筋)组成,通过销钉连接。在操作中,这些DPJ结构有各种性能要求,例如保持高水平的表面精度,实现所需的刚度和可调的固有频率。失去预期的性能通常会导致DPJ结构出现故障甚至崩溃。然而,由于本构建模和设计工具的缺乏,很难获得具有理想性能的DPJ结构的优化设计。该项目通过创建一个数据驱动的闭环平台来解决这些问题,以优化设计DPJ结构。将设计和构建一系列数据驱动工具,以创建所提出的闭环平台:(1)将创建一种新的随机方法来确定DJP结构的初始平衡构型;(2)将开发一种基于机器学习和先进无损检测的新型DPJ结构计算建模技术。该项目将解决结构工程中的迫切需求,并提供对DPJ结构的设计和计算建模的更深层次的理解。从该项目中获得的结果可以帮助提高各种领域的一类结构的性能,安全性和寿命,包括建筑,航天器,军事装备和高科技设备。该项目将通过开发一系列数据驱动工具来促进数值和高性能科学计算,并扩展实体和结构力学的建模和仿真能力,从而补充建立下一代先进网络基础设施生态系统的努力。该项目还将有助于升级结构计算建模课程。本项目将招募工科学生并指导他们。对学生的培训将包括结构设计、计算建模、算法开发和实验测试。传统的结构设计是一种开环协议,其中遵循设计建模-验证过程。该项目的主要目标是创建一个数据驱动的闭环平台,用于DPJ结构的优化设计。该框架不变平台提供了闭环结构设计协议。在该平台中,实验结果不仅将用于模型验证,还将提供训练和测试数据,以进一步提高数据驱动计算模型的性能。然后使用计算模型来指导初始结构设计,从而闭合环路。为实现这一目标,将开展两项工作。第一个任务是开发一种随机方法来寻找形状。传统的DPJ结构寻形方法需要构件分组,这在很大程度上依赖于结构的几何简洁性。为了解决这一问题,将设计和研究一种新的方法,称为随机固定节点位置法。这种方法的主要优点是它不使用成员分组,也不需要任何几何简单性。这些特点将使该方法成为设计大型、复杂和不规则的DPJ结构的有力工具。第二个任务是开发一种数据驱动的计算建模技术。本构建模技术往往过度简化了DPJ结构,导致无法反映结构的重要力学特性。由于在其他固体或结构中不常见的特殊特性,很少有最近开发的计算建模技术适用于DPJ结构。该项目将开发一种基于机器学习和DPJ结构无损检测的新型计算建模技术。该技术将绕过传统的本构建模,为处理DPJ结构提供良好的性能。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A New Approach to Nonlinear Dynamic Modeling and Vibration Analysis of Tensegrity Structures
张拉整体结构非线性动力建模和振动分析的新方法
Review of Root-Mean-Square Error Calculation Methods for Large Deployable Mesh Reflectors
Prototype Design and Manufacture of a Deployable Tensegrity Microrobot
可部署张拉整体微型机器人的原型设计与制造
A Cartesian spatial discretization method for nonlinear dynamic modeling and vibration analysis of tensegrity structures
张拉整体结构非线性动力建模和振动分析的笛卡尔空间离散方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sichen Yuan其他文献

Endogenous tyrosinase-catalyzed therapeutics
内源性酪氨酸酶催化疗法
  • DOI:
    10.1038/s41467-025-61799-7
  • 发表时间:
    2025-07-12
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Yawen You;Zhaochen Guo;Yixin Wang;Sichen Yuan;Quanyin Hu
  • 通讯作者:
    Quanyin Hu
One therapeutic approach for triple-negative breast cancer: Checkpoint kinase 1 inhibitor AZD7762 combination with neoadjuvant carboplatin
  • DOI:
    10.1016/j.ejphar.2021.174366
  • 发表时间:
    2021-10-05
  • 期刊:
  • 影响因子:
  • 作者:
    Haiying Zhu;Zijian Rao;Sichen Yuan;Jieqiong You;Chenggang Hong;Qiaojun He;Bo Yang;Chengyong Du;Ji Cao
  • 通讯作者:
    Ji Cao
Engineered platelets as targeted protein degraders and application to breast cancer models
工程化血小板作为靶向蛋白降解剂及其在乳腺癌模型中的应用
  • DOI:
    10.1038/s41587-024-02494-8
  • 发表时间:
    2024-12-03
  • 期刊:
  • 影响因子:
    41.700
  • 作者:
    Yu Chen;Samira Pal;Wen Li;Fengyuan Liu;Sichen Yuan;Quanyin Hu
  • 通讯作者:
    Quanyin Hu
An Illumination Modulation-Based Adversarial Attack Against Automated Face Recognition System
针对自动人脸识别系统的基于照明调制的对抗攻击
Design and evaluation of a novel flexible, wear-resistant de-icing brush: a solution to road damage and wear
  • DOI:
    10.1007/s12206-024-0617-8
  • 发表时间:
    2024-07-04
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Hongliang Li;Jun Liu;Jiangjie Qiu;Sichen Yuan;Chengwei Li
  • 通讯作者:
    Chengwei Li

Sichen Yuan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sichen Yuan', 18)}}的其他基金

CRII:OAC:A Data-Driven Closed-Loop Platform for Optimal Design of Deployable Pin-Jointed Structures
CRII:OAC:用于可展开销接结构优化设计的数据驱动闭环平台
  • 批准号:
    2335692
  • 财政年份:
    2023
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Standard Grant

相似国自然基金

Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
  • 批准号:
    21603131
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
  • 批准号:
    21242013
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
  • 批准号:
    2403239
  • 财政年份:
    2024
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Standard Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
  • 批准号:
    2403360
  • 财政年份:
    2024
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Standard Grant
OAC Core: Improving Data Integrity for HPC Datasets using Sparsity Profile
OAC 核心:使用稀疏性配置文件提高 HPC 数据集的数据完整性
  • 批准号:
    2312982
  • 财政年份:
    2023
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Standard Grant
OAC Core: Towards Zero-Carbon Data Movement at the HPC and Cloud Data Centers with GreenDataFlow
OAC 核心:利用 GreenDataFlow 在 HPC 和云数据中心实现零碳数据移动
  • 批准号:
    2313061
  • 财政年份:
    2023
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization
合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩
  • 批准号:
    2313124
  • 财政年份:
    2023
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Standard Grant
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
  • 批准号:
    2313738
  • 财政年份:
    2023
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2412329
  • 财政年份:
    2023
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization
合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩
  • 批准号:
    2313122
  • 财政年份:
    2023
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Standard Grant
OAC Core: LABIOS: Storage Acceleration via Data Labeling and Asynchronous I/O
OAC 核心:LABIOS:通过数据标签和异步 I/O 进行存储加速
  • 批准号:
    2313154
  • 财政年份:
    2023
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Zero-trust and Traceable Data Infrastructure for Health IoT Data Storage and Sharing
合作研究:OAC Core:用于健康物联网数据存储和共享的零信任和可追溯的数据基础设施
  • 批准号:
    2312973
  • 财政年份:
    2023
  • 资助金额:
    $ 17.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了