OAC Core: Towards Zero-Carbon Data Movement at the HPC and Cloud Data Centers with GreenDataFlow
OAC 核心:利用 GreenDataFlow 在 HPC 和云数据中心实现零碳数据移动
基本信息
- 批准号:2313061
- 负责人:
- 金额:$ 59.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As commercial and scientific applications generate data at increasingly high rates, the carbon footprint associated with data movement is becoming a critical concern, particularly for High-Performance Computing (HPC) and Cloud data centers. While there is substantial research focusing on power management techniques at the hardware level and lower networking stack layers during data transfers, little attention has been paid to energy-saving measures at the application layer for computing systems such as servers, HPC centers, and Cloud data centers during network data transmission. The existing strategies in this realm are either prohibitively expensive, impractical in the short term, or sacrifice performance in pursuit of increased energy efficiency. This project develops an innovative application-layer solution, which is cost-effective, practical for immediate deployment, and importantly, does not compromise performance while boosting energy efficiency. It possesses the ability to adaptively fine-tune several application-layer and kernel-layer transfer parameters, thereby guaranteeing efficient utilization of computing and networking resources. This, in turn, minimizes data transfer energy consumption without undermining end-to-end performance. This revolutionary approach to energy-efficient data transfers underscores the innovation and transformative potential of this project. The models, algorithms, and tools developed within this project are poised to augment performance and reduce power consumption during end-to-end data transfers, potentially saving gigawatt hours of energy and contributing millions of dollars in savings to the US economy. Furthermore, this project seeks to permeate research insights across all tiers of education. The well-structured research activities promise to benefit for K-12, undergraduate, and graduate students alike, fostering their academic growth and nurturing future scientists in this critical field.This project develops novel application-layer models, algorithms, and tools for (1) prediction and tuning of the best cross-layer transfer parameter combination for energy-efficient and high-performance data transfers at the HPC and Cloud data centers; (2) a deep reinforcement learning-based approach that can adapt to the dynamically changing conditions in a wide range of network and end system configurations; (3) accurate estimation of the accompanying network device power consumption due to changing data transfer rate on the active intra- and inter-data center network links and dynamic readjustment of the transfer rate to balance the energy vs. performance ratio; and (4) a suite of service level agreement based energy-efficient transfer algorithms to the HPC administrators and Cloud service providers for dynamically adjustable performance and energy efficiency goals. The evaluation and validation of the proposed models and algorithms are performed in realistic scenarios in collaboration with the HPC Center at Texas Tech University and the Distributed Cloud Management group at IBM. The research outcomes of this project will fill a significant gap in the data transfer energy efficiency in HPC and Cloud data centers. This project's eventual goal is to translate the research activities into robust, production-quality software libraries that will reduce the carbon footprint of data movement for a range of user communities dealing with large amounts of data. The project will enable wider broader impacts through the development of graduate and undergraduate curricula, K-12 outreach programs, summer boot camps, the recruitment of minority groups, and broadening participation in computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着商业和科学应用程序以越来越高的速度生成数据,与数据移动相关的碳足迹正成为一个关键问题,特别是对于高性能计算(HPC)和云数据中心。在数据传输过程中,硬件层和较低网络堆栈层的电源管理技术已经得到了大量的研究,但在服务器、高性能计算中心和云数据中心等计算系统的网络数据传输过程中,应用层的节能措施却很少受到关注。这一领域的现有策略要么昂贵得令人望而却步,要么短期内不切实际,要么为了追求更高的能源效率而牺牲性能。该项目开发了一种创新的应用层解决方案,具有成本效益,可立即部署,重要的是,在提高能源效率的同时不影响性能。它具有自适应微调多个应用层和内核层传输参数的能力,从而保证了计算和网络资源的有效利用。这反过来又可以在不损害端到端性能的情况下最大限度地减少数据传输能耗。这种革命性的节能数据传输方法凸显了该项目的创新和变革潜力。该项目中开发的模型、算法和工具将提高端到端数据传输的性能,降低功耗,可能节省千兆瓦时的能源,为美国经济节省数百万美元。此外,该项目旨在将研究见解渗透到所有教育层次。结构良好的研究活动有望使K-12、本科生和研究生受益,促进他们的学术成长,培养这一关键领域的未来科学家。该项目开发了新颖的应用层模型、算法和工具,用于(1)预测和调优最佳跨层传输参数组合,以实现高性能高性能高性能高性能高性能高性能高性能的高性能高性能数据传输;(2)基于深度强化学习的方法,可以适应各种网络和终端系统配置中动态变化的条件;(3)准确估计由于数据中心内和数据中心间的主动网络链路上数据传输速率的变化而伴随的网络设备功耗,并动态调整传输速率以平衡能量与性能比;(4)为高性能计算管理员和云服务提供商提供一套基于服务水平协议的节能传输算法,以实现动态调整的性能和能效目标。我们与得克萨斯理工大学的HPC中心和IBM的分布式云管理小组合作,在实际场景中对所提出的模型和算法进行评估和验证。本项目的研究成果将填补HPC和云数据中心在数据传输能效方面的重大空白。该项目的最终目标是将研究活动转化为健壮的、生产质量的软件库,这将为处理大量数据的用户社区减少数据移动的碳足迹。该项目将通过开发研究生和本科生课程、K-12外展项目、夏季新兵训练营、招募少数群体以及扩大计算机领域的参与,产生更广泛的影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tevfik Kosar其他文献
Qualitative analysis of the relationship between design smells and software engineering challenges
设计味道与软件工程挑战之间关系的定性分析
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Asif Imran;Tevfik Kosar - 通讯作者:
Tevfik Kosar
Towards Zero-Carbon Data Movement at the HPC and Cloud Data Centers
在 HPC 和云数据中心实现零碳数据移动
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tevfik Kosar - 通讯作者:
Tevfik Kosar
Guest Editors’ Introduction: Special Issue on Data-Intensive Computing in the Clouds
- DOI:
10.1007/s10723-012-9216-5 - 发表时间:
2012-03-24 - 期刊:
- 影响因子:2.900
- 作者:
Tevfik Kosar;Ioan Raicu - 通讯作者:
Ioan Raicu
Tevfik Kosar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tevfik Kosar', 18)}}的其他基金
IPA Agreement with University of New York at Buffalo 1st year (Kosar 2020)
与纽约大学布法罗分校签订 IPA 协议第一年 (Kosar 2020)
- 批准号:
2042696 - 财政年份:2020
- 资助金额:
$ 59.93万 - 项目类别:
Intergovernmental Personnel Award
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
- 批准号:
2007829 - 财政年份:2020
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant
EAGER: GreenDataFlow: Minimizing the Energy Footprint of Global Data Movement
EAGER:GreenDataFlow:最大限度地减少全球数据移动的能源足迹
- 批准号:
1842054 - 财政年份:2018
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant
CIF21 DIBBs: PD: OneDataShare: A Universal Data Sharing Building Block for Data-Intensive Applications
CIF21 DIBB:PD:OneDataShare:数据密集型应用程序的通用数据共享构建块
- 批准号:
1724898 - 财政年份:2017
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant
CAREER: Data-aware Distributed Computing for Enabling Large-scale Collaborative Science
职业:数据感知分布式计算支持大规模协作科学
- 批准号:
1131889 - 财政年份:2011
- 资助金额:
$ 59.93万 - 项目类别:
Continuing Grant
EAGER: Stork Data Scheduler for Azure
EAGER:适用于 Azure 的 Stork 数据调度程序
- 批准号:
1115805 - 财政年份:2011
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant
CAREER: Data-aware Distributed Computing for Enabling Large-scale Collaborative Science
职业:数据感知分布式计算支持大规模协作科学
- 批准号:
0846052 - 财政年份:2009
- 资助金额:
$ 59.93万 - 项目类别:
Continuing Grant
MRI: Development of PetaShare: A Distributed Data Archival, Analysis and Visualization System for Data Intensive Collaborative Research
MRI:PetaShare 的开发:用于数据密集型协作研究的分布式数据存档、分析和可视化系统
- 批准号:
0619843 - 财政年份:2006
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant
相似国自然基金
数字重庆建设背景下核心关键技术分析模型及应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI赋能职业教育:“智慧职教”平台教学视频核心知识抽取研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
SRCIN1-SRC介导的突触骨架动态失衡致自闭症核心症状的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
表面晶格共振增强手性特性的机理研究及其传感应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
运载火箭核心零部件纵环缝自动焊接技术研发
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
“三阶四融五机制”为核心的医学创新型人才全职业生涯培养体系构建研究
- 批准号:2025C35089
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
FUT8介导的核心岩藻糖基化修饰在威廉姆斯综合征神经发育中的作用与机制研究
- 批准号:QN25C090016
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
关键核心技术断链风险与微观企业投资行为
- 批准号:2025JJ60450
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
石上柏治疗缺血性中风核心功效物质挖掘及神经保护作用机理研究
- 批准号:2025JJ50571
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
探究游戏障碍者与电竞玩家核心临床特征差异的神经生物机制
- 批准号:2025JJ80613
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318843 - 财政年份:2023
- 资助金额:
$ 59.93万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2247619 - 财政年份:2023
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318844 - 财政年份:2023
- 资助金额:
$ 59.93万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2247620 - 财政年份:2023
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Robust, Scalable, and Resilient Radio Fingerprinting
协作研究:SaTC:核心:小型:迈向稳健、可扩展和有弹性的无线电指纹识别
- 批准号:
2225161 - 财政年份:2023
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Towards Deceptive and Domain-Specific Cyber-Physical Honeypots
SaTC:核心:小型:走向欺骗性和特定领域的网络物理蜜罐
- 批准号:
2231651 - 财政年份:2023
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant
CCF: SHF: CORE: Small: Towards Systematic Quality Control of Physically Unclonable Functions (PUFs)
CCF:SHF:CORE:小型:迈向物理不可克隆功能(PUF)的系统质量控制
- 批准号:
2244479 - 财政年份:2023
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Robust, Scalable, and Resilient Radio Fingerprinting
协作研究:SaTC:核心:小型:迈向稳健、可扩展和有弹性的无线电指纹识别
- 批准号:
2225160 - 财政年份:2023
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant