Algebraic K-Theory, Topological Hochschild Homology, and Equivariant Homotopy Theory

代数 K 理论、拓扑 Hochschild 同调和等变同伦理论

基本信息

  • 批准号:
    2104233
  • 负责人:
  • 金额:
    $ 23.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The mathematical fields of algebra and topology are deeply intertwined. Indeed, tools from algebra can be used to study objects in topology, and vice versa. One illustration of this deep interaction is through algebraic K-theory. Algebraic K-theory is an invariant of rings, fundamental objects in algebra. There is great interest in algebraic K-theory due to its significant applications in the fields of algebraic geometry, number theory, and topology. While algebraic K-theory is difficult to compute, and many open questions remain, there is a powerful approach using tools from topology. In recent years, exciting advances in algebraic topology have made it possible to study questions in algebraic K-theory which were previously thought to be inaccessible. A goal of this project is to produce new algebraic K-theory computations. A key step in computing algebraic K-theory is studying a related invariant called topological Hochschild homology. Another goal of this project is to further develop the framework and theory around variants of topological Hochschild homology, and study applications to several other areas of mathematics. In addition to the mathematics research goals, the project also includes work in undergraduate and graduate education, undergraduate research, conference organization, and efforts to support the participation of women and other underrepresented groups in mathematics. This project uses the tools of equivariant stable homotopy to study algebraic K-theory and topological Hochschild homology. Algebraic K-theory is an invariant of a ring which is generally very difficult to compute. A fruitful approach to the study of algebraic K-theory is the trace method approach, which approximates algebraic K-theory by theories that are more computable, such as topological Hochschild homology and topological cyclic homology. The trace method approach relies on tools from equivariant stable homotopy theory. This project explores the intricate relationship between equivariant homotopy theory, algebraic K-theory, and topological Hochschild homology. Specific research goals of the project are organized into three broad objectives: One, use recent developments in trace methods and equivariant stable homotopy theory to compute algebraic K-theory groups which were previously inaccessible. Two, use equivariant homotopy theory to study algebraic and topological Hochschild homologies such as twisted topological Hochschild homology and Real topological Hochschild homology. Three, study applications of topological Hochschild homology theories to questions in geometry and low-dimensional topology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数和拓扑学的数学领域深深地交织在一起。事实上,代数中的工具可以用来研究拓扑学中的对象,反之亦然。这种深度相互作用的一个例证是通过代数K理论。代数K-理论是环的不变量,环是代数中的基本对象。由于代数K-理论在代数几何、数论和拓扑学等领域的重要应用,人们对它产生了极大的兴趣。虽然代数K-理论很难计算,而且还有许多悬而未决的问题,但有一种强大的方法可以使用拓扑学的工具。近年来,代数拓扑学取得了令人振奋的进展,使得研究代数K-理论中以前被认为是不可理解的问题成为可能。这个项目的一个目标是产生新的代数K-理论计算。计算代数K-理论的一个关键步骤是研究一个称为拓扑Hochschild同调的相关不变量。这个项目的另一个目标是围绕拓扑Hochschild同调的变体进一步发展框架和理论,并研究在数学的其他几个领域的应用。除数学研究目标外,该项目还包括本科生和研究生教育、本科生研究、会议组织以及支持妇女和其他代表性不足群体参与数学的工作。本课题利用等变稳定同伦的工具来研究代数K-理论和拓扑Hochschild同调。代数K-理论是环的一个不变量,一般很难计算。研究代数K-理论的一个卓有成效的方法是迹方法,它用更容易计算的理论来逼近代数K-理论,如拓扑Hochschild同调和拓扑圈同调。迹法方法依赖于等变稳定同伦理论的工具。本课题探索等变同伦理论、代数K-理论和拓扑Hochschild同调之间的复杂关系。该项目的具体研究目标被组织成三个广泛的目标:第一,利用迹方法和等变稳定同伦理论的最新发展来计算以前不可访问的代数K-理论群。第二,利用等变同伦理论研究了代数和拓扑Hochschild同调,如扭曲拓扑Hochschild同调和实拓扑Hochschild同调。第三,研究拓扑Hochschild同调理论在几何和低维拓扑问题中的应用。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Shadow Perspective on Equivariant Hochschild Homologies
等变 Hochschild 同调的影子视角
  • DOI:
    10.1093/imrn/rnac250
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Adamyk, Katharine;Gerhardt, Teena;Hess, Kathryn;Klang, Inbar;Kong, Hana Jia
  • 通讯作者:
    Kong, Hana Jia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Teena Gerhardt其他文献

Teena Gerhardt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Teena Gerhardt', 18)}}的其他基金

Conference: The 2024 Graduate Student Topology and Geometry Conference
会议:2024年研究生拓扑与几何会议
  • 批准号:
    2348932
  • 财政年份:
    2024
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Trace Methods and Applications for Cut-and-Paste K-Theory
FRG:协作研究:剪切粘贴 K 理论的追踪方法和应用
  • 批准号:
    2052042
  • 财政年份:
    2021
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Standard Grant
Algebraic K-Theory and Equivariant Homotopy Theory
代数 K 理论和等变同伦理论
  • 批准号:
    1810575
  • 财政年份:
    2018
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Continuing Grant
CAREER: Equivariant Homotopy and Algebraic K-Theory
职业:等变同伦和代数 K 理论
  • 批准号:
    1149408
  • 财政年份:
    2012
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Continuing Grant
Algebraic K-theory and Equivariant Homotopy Theory
代数K理论和等变同伦理论
  • 批准号:
    1007083
  • 财政年份:
    2010
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
  • 批准号:
    2313262
  • 财政年份:
    2023
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
  • 批准号:
    2136890
  • 财政年份:
    2021
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Standard Grant
Excellence in Research: Morse theory and Algebraic Topological Methods for Q-curvature type equations
卓越研究:Q 曲率型方程的莫尔斯理论和代数拓扑方法
  • 批准号:
    2000164
  • 财政年份:
    2020
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Algebraic K-Theory, Topological Periodic Cyclic Homology, and Noncommutative Algebraic Geometry
合作研究:代数K理论、拓扑周期循​​环同调和非交换代数几何
  • 批准号:
    1811820
  • 财政年份:
    2018
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Continuing Grant
Traces in Algebraic K-theory and Topological Fixed Point Invariants
代数 K 理论和拓扑不动点不变量中的迹
  • 批准号:
    1810779
  • 财政年份:
    2018
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Algebraic K-Theory, Topological Periodic Cyclic Homology, and Noncommutative Algebraic Geometry
合作研究:代数K理论、拓扑周期循​​环同调和非交换代数几何
  • 批准号:
    1812064
  • 财政年份:
    2018
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Continuing Grant
Algebraic and Topological Methods in Graph Theory
图论中的代数和拓扑方法
  • 批准号:
    311960-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and Topological Methods in Graph Theory
图论中的代数和拓扑方法
  • 批准号:
    311960-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Discovery Grants Program - Individual
Topological methods in Galois theory and birational algebraic geometry
伽罗瓦理论和双有理代数几何中的拓扑方法
  • 批准号:
    438028-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Postdoctoral Fellowships
Topological methods in Galois theory and birational algebraic geometry
伽罗瓦理论和双有理代数几何中的拓扑方法
  • 批准号:
    438028-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 23.28万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了