Traces in Algebraic K-theory and Topological Fixed Point Invariants

代数 K 理论和拓扑不动点不变量中的迹

基本信息

  • 批准号:
    1810779
  • 负责人:
  • 金额:
    $ 18.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

One of the barriers to answering many math questions is that there is just too much information - too many examples and too many possibilities. There are many ways to attempt to manage this problem but many of them are based on not remembering some of the differences between our examples. One way to do this is to define a function, an invariant, that assigns some simpler information, say a number, to each of our examples. This by itself doesn't help make progress since there maybe no special pattern to the function and it may distinguish between too many examples. We can make this work much better by imposing conditions on these functions. One of the most important options is to ask that for a function that can determined by its values on smaller pieces. This perspective is very powerful and informs approaches to many topological invariants, but important invariants associated to fixed point theory have escaped its reach. The goal of this project is to rectify this and use the tools that prioritize this additivity to further develop fixed point invariants. The project also supports the PI's work with the socioeconomically diverse graduate student population at the University of Kentucky. The PI has worked to build a community where students can identify difficulties, feel comfortable asking questions, and learn to effectively advocate for themselves. The additivity of the Euler characteristic is one of the most important properties of this very important invariant. One way to capture this additivity is to observe that the Euler characteristic can be understood as the image of a class in algebraic K-theory. Classically, the generalizations of the Euler characteristic that relate to topological fixed point theory ignored the significance of additivity. The work in this project seeks to rectify this omission. Previous results suggest two to approaches to this goal. The first recognizes that the Reidemeister trace, a refinement of the Euler characteristic that gives a converse to the Lefschetz fixed point theorem, takes values in topological Hochschild homology. Topological Hochschild homology receives a map from topological restriction homology and it seems likely that the Reidemeister trace will lift through this map to a topologically meaningful class in topological restriction homology. An alternative approach is to start with the question of understanding K-theory of endomorphisms of modules over E-infinity ring spectra. From here the goal is to describe connections between the cyclotomic trace and trace in bicategories and symmetric monodial categories. In all of this work it also important to ground the results in topological meaning - to verify that classes constructed in these various groups are invariants associated to interesting questions. For example, these constructions should start by giving interesting invariants for periodic points and possibly extend to invariants for dynamical systems. This perspective also fits within a longer term goal of use fixed point theory as a test case for new methods of producing additive invariants that arise from wrong-way-maps or transfers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
回答许多数学问题的障碍之一是有太多的信息-太多的例子和太多的可能性。 有很多方法可以尝试处理这个问题,但其中许多方法都是基于不记住我们的例子之间的一些差异。 一种方法是定义一个函数,一个不变量,它为我们的每个例子分配一些简单的信息,比如一个数字。 这本身并不能帮助取得进展,因为函数可能没有特殊的模式,而且它可能区分太多的例子。 我们可以通过对这些功能施加条件来使这项工作更好。最重要的选择之一是要求一个函数,它可以由它的值在更小的块上确定。这种观点是非常强大的,并通知方法,许多拓扑不变量,但重要的不变量相关的不动点理论已经逃脱了它的范围。 这个项目的目标是纠正这一点,并使用优先考虑这种可加性的工具来进一步开发不动点不变量。 该项目还支持PI与肯塔基州大学社会经济多样化的研究生群体的工作。 PI致力于建立一个社区,让学生可以识别困难,轻松地提出问题,并学会有效地为自己辩护。欧拉特征线的可加性是这个非常重要的不变量的最重要的性质之一。捕捉这种可加性的一种方法是观察欧拉特征线可以被理解为代数K理论中一类的图像。在经典的拓扑不动点理论中,欧拉特征线的推广忽略了可加性的重要性。本项目的工作旨在纠正这一遗漏。以前的结果表明,有两种方法可以实现这一目标。第一个认识到,Reidemeister跟踪,一个完善的欧拉特征,给出了一个逆莱夫谢茨不动点定理,在拓扑Hochschild同源值。拓扑Hochschild同源性从拓扑限制同源性得到一个映射,Reidemeister迹似乎很可能通过这个映射提升到拓扑限制同源性中的一个拓扑有意义的类。另一种方法是从理解E-无限环谱上模的自同态的K-理论开始。从这里开始,我们的目标是描述分圆迹和双范畴中的迹与对称单范畴中的迹之间的联系。 在所有这些工作中,将结果建立在拓扑意义上也很重要-以验证在这些不同的组中构造的类是与有趣的问题相关的不变量。例如,这些构造应该从给出周期点的有趣不变量开始,并可能扩展到动力系统的不变量。这一观点也符合使用不动点理论作为测试案例的长期目标,以测试产生错误路径映射或转移的添加剂不变量的新方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coherence for bicategories, lax functors, and shadows
双类别、宽松函子和阴影的一致性
Periodic Points and Topological Restriction Homology
周期点和拓扑限制同调
Topological Hochschild homology and higher characteristics
拓扑 Hochschild 同调和更高特性
  • DOI:
    10.2140/agt.2019.19.965
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Campbell, Jonathan;Ponto, Kate
  • 通讯作者:
    Ponto, Kate
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathleen Ponto其他文献

Kathleen Ponto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathleen Ponto', 18)}}的其他基金

FRG: Collaborative Research: Trace Methods and Applications for Cut-and-Paste K-Theory
FRG:协作研究:剪切粘贴 K 理论的追踪方法和应用
  • 批准号:
    2052905
  • 财政年份:
    2021
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Traces in higher categories, stable homotopy theory, and applications to fixed point theory
高范畴中的迹、稳定同伦理论以及不动点理论的应用
  • 批准号:
    1207670
  • 财政年份:
    2012
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0703574
  • 财政年份:
    2007
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Fellowship

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
  • 批准号:
    DP240100186
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Discovery Projects
Applications of algebraic topology to quantum field theory
代数拓扑在量子场论中的应用
  • 批准号:
    2882485
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Studentship
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
  • 批准号:
    EP/W014882/2
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Research Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
  • 批准号:
    2313262
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Algebraic Structures in Weakly Supervised Disentangled Representation Learning
弱监督解缠表示学习中的代数结构
  • 批准号:
    22KJ0880
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Applications of homotopy theory to algebraic geometry and physics
同伦理论在代数几何和物理学中的应用
  • 批准号:
    2305373
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Algebraic integrable probability theory
代数可积概率论
  • 批准号:
    22KJ2770
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Chromatic homotopy theory, algebraic K-theory, and L-functions
色同伦理论、代数 K 理论和 L 函数
  • 批准号:
    2348963
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
  • 批准号:
    22K13904
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Higher Multiplier Ideals and Other Applications of Hodge Theory in Algebraic Geometry
更高乘数理想及霍奇理论在代数几何中的其他应用
  • 批准号:
    2301526
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了