CDSE: Collaborative: Cyber Infrastructure to Enable Computer Vision Applications at the Edge Using Automated Contextual Analysis

CDSE:协作:使用自动上下文分析在边缘启用计算机视觉应用的网络基础设施

基本信息

  • 批准号:
    2104709
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Digital cameras are deployed as network edge devices, gathering visual data for such tasks as autonomous driving, traffic analysis, and wildlife observation. Analyzing the vast amount of visual data is a challenge. Existing computer vision methods require fast computers that are beyond the computational capabilities of many edge devices. This project aims to improve the efficiency of computer vision methods so that they can run on battery-powered edge devices. Based on the visual data and complementary metadata (e.g., geographical location, local time), the project first extracts contextual information (such as a city street is expected to be busy at rush hour). The contextual information can help assist determine whether analysis results are correct. For example, a wild animal is not expected on a city street. Moreover, contextual information can improve efficiency. Only certain pixels need to be analyzed (pixels on the road are useful for detecting cars, while pixels in the sky are not) and this can significantly reduce the amount of computation, thus enabling analysis on edge devices. This project constructs a cyberinfrastructure for three services: (1) understand contextual information to reduce the search space of analysis methods, (2) reduce computation by considering only necessary pixels, and (3) automate evaluation of analysis results based on the contextual information without human effort.Understanding contextual information is achieved by using background segmentation, GPS-location-dependent logic, and image depth maps. Background analysis leverages semantic segmentation and analysis over time to identify the background pixels and then generate inference rules via a background-implies-foreground relationship. If a pixel is consistently marked by the same semantic label across a long period of time, this pixel is classified as a background pixel. The background information can infer certain types of foreground objects. For example, if the background is city streets, the foreground objects can be vehicles or pedestrians; if a bison is detected, this is likely a mistake. This project processes only the foreground pixels by adding masks to the neural network layers. Masking convolution can substantially reduce the amount of computation with no loss of accuracy and no additional training is needed. Meanwhile, hierarchical neural networks can skip sections of a model based on context. For example, pixels in the sky only need to be processed by the hierarchy nodes that classify airplanes. The project provides an online service that can accept input data and analysis programs for automatic evaluation of the programs, without human created labels. The evaluation is based on the correlations of background and foreground objects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数码相机被部署为网络边缘设备,为自动驾驶、交通分析和野生动物观察等任务收集视觉数据。分析大量的视觉数据是一项挑战。现有的计算机视觉方法需要快速的计算机,这超出了许多边缘设备的计算能力。该项目旨在提高计算机视觉方法的效率,使其能够在电池供电的边缘设备上运行。基于视觉数据和补充元数据(例如,地理位置、当地时间),该项目首先提取上下文信息(例如,城市街道在高峰时间预计是忙碌的)。上下文信息可以帮助确定分析结果是否正确。例如,野生动物不应该出现在城市街道上。此外,上下文信息可以提高效率。 仅需要分析某些像素(道路上的像素对于检测汽车有用,而天空中的像素则不有用),这可以显著减少计算量,从而实现对边缘设备的分析。该项目构建了三种服务的网络基础设施:(1)理解上下文信息以减少分析方法的搜索空间,(2)通过只考虑必要的像素来减少计算,(3)基于上下文信息自动评估分析结果,而无需人工。理解上下文信息通过使用背景分割,GPS位置相关逻辑和图像深度图来实现。 背景分析利用随时间的语义分割和分析来识别背景像素,然后通过背景-隐含-前景关系生成推理规则。如果一个像素在很长一段时间内始终被相同的语义标签标记,则该像素被分类为背景像素。背景信息可以推断某些类型的前景对象。例如,如果背景是城市街道,则前景对象可以是车辆或行人;如果检测到野牛,则这可能是错误的。该项目通过向神经网络层添加遮罩来仅处理前景像素。掩蔽卷积可以大大减少计算量,而不会损失精度,并且不需要额外的训练。同时,分层神经网络可以根据上下文跳过模型的部分。例如,天空中的像素只需要由对飞机进行分类的层次节点进行处理。该项目提供了一种在线服务,可以接受输入数据和分析程序,用于自动评估程序,而无需人工创建标签。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Why Accuracy is Not Enough: The Need for Consistency in Object Detection
  • DOI:
    10.1109/mmul.2022.3175239
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Caleb Tung;Abhinav Goel;Fischer Bordwell;Nick Eliopoulos;Xiao Hu;Yung-Hsiang Lu;G. Thiruvathukal
  • 通讯作者:
    Caleb Tung;Abhinav Goel;Fischer Bordwell;Nick Eliopoulos;Xiao Hu;Yung-Hsiang Lu;G. Thiruvathukal
Tree-Based Unidirectional Neural Networks for Low-Power Computer Vision
  • DOI:
    10.1109/mdat.2022.3217016
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Abhinav Goel;Caleb Tung;Nick Eliopoulos;G. Thiruvathukal;Amy Wang;Yung-Hsiang Lu;James C. Davis
  • 通讯作者:
    Abhinav Goel;Caleb Tung;Nick Eliopoulos;G. Thiruvathukal;Amy Wang;Yung-Hsiang Lu;James C. Davis
Observing Human Mobility Internationally During COVID-19
  • DOI:
    10.1109/mc.2022.3175751
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Shane Allcroft;M. Metwaly;Zachery Berg;Isha Ghodgaonkar;Fischer Bordwell;Xinxin Zhao;Xinglei Liu;Jiahao Xu;Subhankar Chakraborty;Vishnu Banna;Akhil Chinnakotla;Abhinav Goel;Caleb Tung;Gore Kao;Wei Zakharov;D. Shoham;G. Thiruvathukal;Yung-Hsiang Lu
  • 通讯作者:
    Shane Allcroft;M. Metwaly;Zachery Berg;Isha Ghodgaonkar;Fischer Bordwell;Xinxin Zhao;Xinglei Liu;Jiahao Xu;Subhankar Chakraborty;Vishnu Banna;Akhil Chinnakotla;Abhinav Goel;Caleb Tung;Gore Kao;Wei Zakharov;D. Shoham;G. Thiruvathukal;Yung-Hsiang Lu
Efficient Computer Vision for Embedded Systems
嵌入式系统的高效计算机视觉
  • DOI:
    10.1109/mc.2022.3145677
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Thiruvathukal, George K.;Lu, Yung-Hsiang
  • 通讯作者:
    Lu, Yung-Hsiang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yung-Hsiang Lu其他文献

Driving force or obstruction? the impacts of financial supervision and structural changes on the productivity of the credit departments of farmers’ associations

Yung-Hsiang Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yung-Hsiang Lu', 18)}}的其他基金

Collaborative Research: OAC Core: Advancing Low-Power Computer Vision at the Edge
合作研究:OAC Core:推进边缘低功耗计算机视觉
  • 批准号:
    2107230
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
  • 批准号:
    2120430
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative:RAPID:Leveraging New Data Sources to Analyze the Risk of COVID-19 in Crowded Locations.
协作:RAPID:利用新数据源分析拥挤场所中的 COVID-19 风险。
  • 批准号:
    2027524
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CCRI: Planning: Collaborative Research: Planning to Develop a Low-Power Computer Vision Platform to Enhance Research in Computing Systems
CCRI:规划:协作研究:规划开发低功耗计算机视觉平台以加强计算系统研究
  • 批准号:
    1925713
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Summit of Software Infrastructure for Managing and Processing Big Multimedia Data at the Internet Scale
互联网规模多媒体大数据管理和处理软件基础设施峰会
  • 批准号:
    1747694
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SI2-SSE: Analyze Visual Data from Worldwide Network Cameras
SI2-SSE:分析来自全球网络摄像机的视觉数据
  • 批准号:
    1535108
  • 财政年份:
    2015
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
I-Corps: Business Analytics for Large Scale Intelligence
I-Corps:大规模智能业务分析
  • 批准号:
    1530914
  • 财政年份:
    2015
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
US-Singapore Workshop: Collaborative Research: Understand the World by Analyzing Many Video Streams
美国-新加坡研讨会:合作研究:通过分析许多视频流了解世界
  • 批准号:
    1427808
  • 财政年份:
    2014
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CPA: Cross-Layer Energy Management by Architectures, Operating Systems, and Application Programs
CPA:通过架构、操作系统和应用程序进行跨层能源管理
  • 批准号:
    0541267
  • 财政年份:
    2006
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
CAREER: A Unified Approach for Energy Management by Operating Systems
职业生涯:操作系统能源管理的统一方法
  • 批准号:
    0347466
  • 财政年份:
    2004
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414607
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414606
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414608
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414605
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414604
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324936
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324937
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Implementation: Medium: Secure, Resilient Cyber-Physical Energy System Workforce Pathways via Data-Centric, Hardware-in-the-Loop Training
协作研究:实施:中:通过以数据为中心的硬件在环培训实现安全、有弹性的网络物理能源系统劳动力路径
  • 批准号:
    2320972
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了