Gauge Theory and Invariants of Symplectic Manifolds

规范理论和辛流形不变量

基本信息

  • 批准号:
    2104919
  • 负责人:
  • 金额:
    $ 15.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The first objective of this project is to study a class of equations known as generalized Seiberg-Witten equations. These little understood equations belong to the area of mathematics known as gauge theory, which originates from physics and describes the dynamics of gauge fields, such as the electromagnetic field and other fields carrying fundamental forces of nature. The importance of gauge fields in pure mathematics stems from their relationship to the geometry of shapes known as manifolds. This leads to the second objective of this project, which is to apply the theory of generalized Seiberg-Witten equations to find new ways of distinguishing different manifolds from one another. The Principal Investigator (PI) is specifically interested in applications lying at the intersection of different areas of research, such as algebraic geometry (which studies manifolds described by equations), symplectic geometry (which studies manifolds related to classical mechanics), topology (which studies properties of manifolds which remain unchanged under deformations), and string theory (a branch of modern theoretical physics). In addition, the project's goal is to expose a broad audience, including graduate and undergraduate students, as well as researchers in other areas, to some of the ideas and techniques of gauge theory and geometry. As part of the project, the PI will organize seminars and minicourses for students and write expository notes on gauge theory aimed at non-specialists.This project will develop analytic foundations in the study of generalized Seiberg-Witten equations on three- and four-dimensional manifolds. Examples of such equations include the Vafa–Witten and Kapustin–Witten equations, which are expected to lead to new topological invariants of low-dimensional manifolds and knots, and the ADHM Seiberg–Witten equations which play an important role in defining conjectural invariants of higher-dimensional Riemannian manifolds with special holonomy. In recent years, there has been a lot of progress on the compactness problem for these equations, following groundbreaking work of Taubes. The first goal of the project is to solve the converse problem of describing the moduli spaces of solutions near the boundary. This will involve understanding singular solutions to the Fueter equation, a nonlinear generalization of the Dirac equation, which appears as the limit of rescallings of generalized Seiberg–Witten equations. In particular, little is at present known about deformation theory and gluing constructions for such singular sections, and making progress in this direction will involve developing new analytical tools for studying singular solutions of elliptic differential equations. The PI will apply this general theory to define a symplectic analog of the Pandharipande–Thomas invariants of Calabi–Yau threefolds. The invariant counts embedded pseudo-holomorphic curves with weights defined using moduli spaces of the ADHM Seiberg–Witten equations. A symplectic interpretation of the Pandharipande–Thomas invariant is likely to shed a new light on the Maulik–Nekrasov–Okounkov–Pandharipande conjecture, which remains one of the major open problems of enumerative geometry of Calabi–Yau threefolds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的第一个目标是研究一类被称为广义Seiberg-Witten方程的方程。这些鲜为人知的方程属于被称为规范理论的数学领域,它起源于物理学,描述了规范场的动力学,如电磁场和其他携带基本自然力的场。规范场在纯数学中的重要性源于它们与流形几何的关系。这就引出了这个项目的第二个目标,即应用广义Seiberg-Witten方程的理论来寻找区分不同流形的新方法。主要研究员(PI)特别感兴趣的应用程序躺在不同的研究领域的交叉点,如代数几何(研究方程描述的流形),辛几何(研究与经典力学相关的流形),拓扑学(研究变形下保持不变的流形的性质)和弦理论(现代理论物理学的分支)。此外,该项目的目标是向广大受众,包括研究生和本科生,以及其他领域的研究人员,介绍规范理论和几何的一些想法和技术。作为该项目的一部分,PI将为学生组织研讨会和小型课程,并针对非专业人员编写规范理论的简要说明。该项目将发展三维和四维流形上广义Seiberg-Witten方程研究的分析基础。这类方程的例子包括Vafa-Witten和Kapustin-Witten方程,它们有望导致低维流形和纽结的新拓扑不变量,以及ADHM Seiberg-Witten方程,它们在定义具有特殊完整性的高维黎曼流形的拓扑不变量方面发挥重要作用。近年来,在Taubes的开创性工作之后,这些方程的紧性问题有了很大的进展。该项目的第一个目标是解决描述边界附近解的模空间的匡威问题。这将涉及到理解奇异的解决方案,富特方程,一个非线性推广的狄拉克方程,这似乎是极限的重名广义塞伯格-威滕方程。特别是,目前知之甚少的变形理论和胶合结构等奇异部分,并在这一方向取得进展将涉及开发新的分析工具,研究奇异的椭圆型微分方程的解。PI将应用这个一般理论来定义卡-丘三重的Pandharipande-Thomas不变量的辛模拟。不变量计数嵌入的伪全纯曲线,其权重使用ADHM Seiberg-Witten方程的模空间定义。Pandharipande-Thomas不变量的辛解释可能会为Maulik-Nekrasov-Okounkov-Pandharipande猜想提供新的线索,该猜想仍然是Calabi-Yau三重枚举几何的主要开放问题之一。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Large其他文献

MP89-12 THE EFFECT OF PRE-STENTING ON COMPLICATIONS AFTER URETEROSCOPY IN PATIENTS ON ANTICOAGULATION OR ANTIPLATELET THERAPY
  • DOI:
    10.1016/j.juro.2018.02.2952
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Seth Bechis;Thomas DiPina;Luay Alshara;Carlos Batagello;Joshua Heiman;Timothy Large;Sri Sivalingam;Roger Sur;Amy Krambeck
  • 通讯作者:
    Amy Krambeck
MP42-20 INCIDENTAL PROSTATE CANCER DIAGNOSED AT HOLMIUM LASER ENUCLEATION OF PROSTATE - REVIEW OF PATIENT OUTCOMES
  • DOI:
    10.1016/j.juro.2016.02.208
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nadya York;Timothy Large;Michael Borofsky;Casey Dauw;James Lingeman;Ronald Boris
  • 通讯作者:
    Ronald Boris
Viscous control of shallow elastic fracture: peeling without precursors
浅层弹性断裂的粘性控制:无前兆剥离
  • DOI:
    10.1017/jfm.2019.185
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    J. Lister;Dominic J. Skinner;Timothy Large
  • 通讯作者:
    Timothy Large
Information system to assist survivors of disasters
援助灾难幸存者的信息系统

Timothy Large的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Instanton gauge theory, knot invariants, and 3-manifolds
瞬时规范理论、结不变量和 3 流形
  • 批准号:
    450239775
  • 财政年份:
    2020
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Heisenberg Grants
Gauge Theory, Floer Homology, and Invariants of Low-Dimensional Manifolds
规范理论、Floer 同调和低维流形不变量
  • 批准号:
    1949209
  • 财政年份:
    2019
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Continuing Grant
Instanton gauge theory, knot invariants, and 3-manifolds
瞬时规范理论、结不变量和 3 流形
  • 批准号:
    401366423
  • 财政年份:
    2018
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Research Grants
Instanton gauge theory, knot invariants, and 3-manifolds
瞬时规范理论、结不变量和 3 流形
  • 批准号:
    347572477
  • 财政年份:
    2017
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Heisenberg Fellowships
Gauge Theory, Floer Homology, and Invariants of Low-Dimensional Manifolds
规范理论、Floer 同调和低维流形不变量
  • 批准号:
    1707857
  • 财政年份:
    2017
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Continuing Grant
Quantum topology and invariants of knots and 3-manifolds related to gauge theory
量子拓扑以及与规范理论相关的结和三流形的不变量
  • 批准号:
    16K13754
  • 财政年份:
    2016
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Elliptic partial differential equations in hyperkähler geometry and gauge theory: Moduli spaces of solutions and geometric invariants.
超克勒几何和规范理论中的椭圆偏微分方程:解的模空间和几何不变量。
  • 批准号:
    215771100
  • 财政年份:
    2012
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Research Fellowships
Supersymmetric Gauge Theory, Donaldson-Thomas Invariants and Hyperkahler Geometry
超对称规范理论、Donaldson-Thomas 不变量和 Hyperkahler 几何
  • 批准号:
    1006046
  • 财政年份:
    2010
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Standard Grant
Low dimensional topology and invariants from symplectic geometry, gauge theory, and quantum algebra
辛几何、规范理论和量子代数的低维拓扑和不变量
  • 批准号:
    0706979
  • 财政年份:
    2007
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Gauge Theory of 3-Manifolds: Spectral Flow & Chern-Simons Invariants
数学科学:三流形规范理论:谱流
  • 批准号:
    9401196
  • 财政年份:
    1995
  • 资助金额:
    $ 15.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了