Gauge Theory, Floer Homology, and Invariants of Low-Dimensional Manifolds
规范理论、Floer 同调和低维流形不变量
基本信息
- 批准号:1949209
- 负责人:
- 金额:$ 3.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This NSF award funds research to study three- and four-dimensional spaces with knotted curves and surfaces embedded within them. Such objects are of particular interest to scientists because of their connection to our physical world and the space-time continuum. These studies will deepen the understanding of our universe. Moreover, the theory of knotted curves has seen broad applications in other fields of science, for example, in investigations of the structure of DNA and that of protein molecules. In recent years, several new techniques have been introduced to study these low dimensional spaces. This project will be devoted to further developing the techniques, providing surprising insights and proving unexpected relationships between existing theories. In collaborative research, the PI will explore new invariants that would help us distinguish between different spaces.This project is devoted to enhancing the power of gauge theory and Floer homology and applying these tools to the study of three- and four-dimensional manifolds. In the first part of this project, joint with Tirasan Khandhawit and Hirofumi Sasahira, the PI will further develop the theory of unfolded Seiberg-Witten Floer spectrum invariants for general three-manifolds and use it to draw new conclusions regarding four-manifolds. In the second part of this project, joint with Daniel Ruberman and Nikolai Saveliev, the PI will carry out research on invariants of four-manifolds with homology identical to the space obtained as a product of a circle with a three sphere, with surprising applications in the study of the three-dimensional homology cobordism group. In the third part of this project, the PI will seek for a sheaf theoretic description of invariants from gauge theory, with the goal to make these invariants more flexible and powerful.
这个NSF奖项资助研究三维和四维空间与打结的曲线和曲面嵌入其中。科学家对这些物体特别感兴趣,因为它们与我们的物理世界和时空连续体有联系。这些研究将加深我们对宇宙的理解。此外,纽结曲线理论在其他科学领域也有广泛的应用,例如,在DNA和蛋白质分子结构的研究中。近年来,一些新的技术已经被引入到研究这些低维空间。该项目将致力于进一步发展技术,提供令人惊讶的见解,并证明现有理论之间意想不到的关系。在合作研究中,PI将探索新的不变量,以帮助我们区分不同的空间。该项目致力于增强规范理论和Floer同调的力量,并将这些工具应用于三维和四维流形的研究。在这个项目的第一部分,与Tirasan Khandhawit和Hirofumi Sasahira联合,PI将进一步发展一般三流形的展开Seiberg-Witten Floer谱不变量理论,并使用它得出关于四流形的新结论。 在这个项目的第二部分,联合丹尼尔鲁伯曼和尼古拉Saveliev,PI将进行研究的不变量的四个流形的同调相同的空间作为一个产品的一个圆与三个领域,与令人惊讶的应用程序的研究三维同调配边群。在这个项目的第三部分,PI将从规范理论中寻求不变量的层理论描述,目标是使这些不变量更加灵活和强大。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianfeng Lin其他文献
Optimal Cooperation Scheme Based on Improved Artificial Bee Colony for Energy Harvesting Cognitive Network
基于改进人工蜂群能量采集认知网络的优化合作方案
- DOI:
10.1007/978-981-16-6324-6_39 - 发表时间:
2021-10 - 期刊:
- 影响因子:0
- 作者:
Jianfeng Lin;Ruiquan Lin;Jun Wang;Min Zhang - 通讯作者:
Min Zhang
Determination of ultra-trace level 241Am in soil by triple-quadrupole inductively coupled plasma-mass spectrometry with mass-shift mode combined with chemical separation
质量转移结合化学分离三重四极杆电感耦合等离子体质谱法测定土壤中超痕量241Am
- DOI:
10.1039/d1ja00403d - 发表时间:
2022 - 期刊:
- 影响因子:3.4
- 作者:
Weichao Zhang;Jianfeng Lin;Haitao Zhang;Sui Fang;Chen Li;Xiaowei Yi;Haijun Dang;Yihong Xu;Wei Wang;Jiang Xu - 通讯作者:
Jiang Xu
Pin(2)–equivariant KO–theory and intersection forms of spin 4–manifolds
Pin(2)–等变 KO–自旋 4–流形的理论和交集形式
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jianfeng Lin - 通讯作者:
Jianfeng Lin
Determining Aspergillus fumigatus transcription factor expression and function during invasion of the mammalian lung
确定烟曲霉侵袭哺乳动物肺部过程中转录因子的表达和功能
- DOI:
10.1101/2020.12.23.424128 - 发表时间:
2020 - 期刊:
- 影响因子:6.7
- 作者:
Hong Liu;Wenjie Xu;V. Bruno;Q. Phan;N. Solis;C. Woolford;R. Ehrlich;A. Shetty;Carie McCraken;Jianfeng Lin;A. Mitchell;S. Filler - 通讯作者:
S. Filler
Family Bauer--Furuta invariant, Exotic Surfaces and Smale conjecture
Bauer族--Furuta不变量、奇异曲面和Smale猜想
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jianfeng Lin;Anubhav Mukherjee - 通讯作者:
Anubhav Mukherjee
Jianfeng Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianfeng Lin', 18)}}的其他基金
Gauge Theory, Floer Homology, and Invariants of Low-Dimensional Manifolds
规范理论、Floer 同调和低维流形不变量
- 批准号:
1707857 - 财政年份:2017
- 资助金额:
$ 3.69万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
- 批准号:
2304207 - 财政年份:2023
- 资助金额:
$ 3.69万 - 项目类别:
Standard Grant
CAREER: Low dimensional topology via Floer theory
职业:通过弗洛尔理论的低维拓扑
- 批准号:
2238103 - 财政年份:2023
- 资助金额:
$ 3.69万 - 项目类别:
Continuing Grant
Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
- 批准号:
2304206 - 财政年份:2023
- 资助金额:
$ 3.69万 - 项目类别:
Standard Grant
MPS-Ascend: Topics in Low-Dimensional Topology and Heegaard Floer Theory
MPS-Ascend:低维拓扑和 Heegaard Floer 理论主题
- 批准号:
2213027 - 财政年份:2022
- 资助金额:
$ 3.69万 - 项目类别:
Fellowship Award
Floer Theory, Arc Spaces, and Singularities
弗洛尔理论、弧空间和奇点
- 批准号:
2203308 - 财政年份:2022
- 资助金额:
$ 3.69万 - 项目类别:
Standard Grant
Floer theory beyond Floer (FloerPlus35)
Floer 之外的 Floer 理论 (FloerPlus35)
- 批准号:
EP/X030660/1 - 财政年份:2022
- 资助金额:
$ 3.69万 - 项目类别:
Research Grant
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2022
- 资助金额:
$ 3.69万 - 项目类别:
Discovery Grants Program - Individual
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2021
- 资助金额:
$ 3.69万 - 项目类别:
Discovery Grants Program - Individual
Higher Representation Theory and Heegaard Floer Homology
更高表示理论和 Heegaard Floer 同调
- 批准号:
2151786 - 财政年份:2021
- 资助金额:
$ 3.69万 - 项目类别:
Standard Grant
Higher Representation Theory and Heegaard Floer Homology
更高表示理论和 Heegaard Floer 同调
- 批准号:
2101916 - 财政年份:2021
- 资助金额:
$ 3.69万 - 项目类别:
Standard Grant