Mechanism of Light-activated Antiviral Activity of Conjugated Polyelectrolyte Polymers and Oligomers

共轭聚电解质聚合物和低聚物的光激活抗病毒活性机制

基本信息

  • 批准号:
    2105171
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYThe health and economic devastation brought on by the Covid-19 pandemic underscores the urgent need to develop a multifaceted pandemic planning and response to stop viral outbreaks. This project takes a materials science and engineering approach to develop broad-spectrum antiviral materials that work against many viruses without inducing resistance. The research team has shown that a class of conjugated polymers and oligomers exhibit remarkable near-UV/visible light-activated killing of bacteriophages and the SARS-CoV-2 coronavirus that causes the Covid-19 pandemic; greater than 99.9999% viral inactivation is routinely achieved. This project focuses on elucidating the antiviral mechanism of the conjugated compounds. Propensity of the compounds to interact with and disrupt the structures and functions of several viral targets, including spike and capsid proteins, viral membrane, and RNA, will be studied using a suite of experimental techniques. Combined with computational simulations, a fundamental understanding of the interactions between the synthetic compounds with viral components that are responsible for their antiviral activity will be gained. Such insights will guide the rational design of new compounds with optimal antiviral properties to slow the spread of infections. This project will also identify virus components to target and degrade that will result in viral inactivation. Taken together, this project will contribute towards the development of highly effective and broad-spectrum antiviral materials for healthcare workers and for the public and will transform our ability to prepare for and respond to current and future outbreaks.TECHNICAL SUMMARYThe goal of this project is to gain a fundamental understanding of the intermolecular interactions between novel synthetic conjugated polyelectrolyte polymers (CPEs) and oligomers (OPEs) with various viral assemblies that give rise to their remarkable light-activated broad-spectrum antiviral activity. CPEs and OPEs have recently been shown to be highly efficient at inactivating the SARS-CoV-2 virus that causes the Covid-19 pandemic. The proposed project focuses on elucidating the antiviral mechanism of the compounds with the ultimate goal of guiding the rational design of novel materials with optimal properties. The CPEs and OPEs are charged and amphiphilic in nature, which provides them the ability to interact with and potentially disrupt the structures, and thereby functions, of multiple virial targets. Additionally, light-activated photosensitizing activity of the compounds can further contribute to their antiviral efficacy. Specifically, the propensity of CPEs and OPEs with varying backbones, chain length, side and end groups, charge density and distribution to interact with and disrupt the structures and functions of several viral macromolecular assemblies, including protein assemblies, membranes, and nucleic acids. The multidisciplinary team will use a suite of biophysical and materials characterization methods to study the interactions between CPEs and OPEs and viral targets, from molecular structural scale to macroscopic property levels, combined synergistically with closely related simulations. Comparing our findings with functional assays and antiviral activities will enable us to elucidate the toxicity mechanism and structure-function relationship of these novel synthetic antiviral materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2019冠状病毒病(COVID-19,即2019冠状病毒病)大流行对健康和经济造成的破坏,突显出迫切需要制定多方面的大流行规划和应对措施,以阻止病毒爆发。该项目采用材料科学和工程方法来开发广谱抗病毒材料,这些材料可以对抗许多病毒而不会诱导耐药性。研究小组已经证明,一类共轭聚合物和低聚物表现出显着的近紫外/可见光激活的噬菌体和导致Covid-19大流行的SARS-CoV-2冠状病毒的杀伤作用;常规实现超过99.9999%的病毒灭活。本项目的重点是阐明共轭化合物的抗病毒机制。将使用一套实验技术研究化合物与几种病毒靶标(包括刺突蛋白和衣壳蛋白、病毒膜和RNA)相互作用并破坏其结构和功能的倾向。结合计算机模拟,将获得对合成化合物与负责其抗病毒活性的病毒组分之间相互作用的基本理解。这些见解将指导具有最佳抗病毒特性的新化合物的合理设计,以减缓感染的传播。本项目还将确定靶向和降解的病毒组分,这将导致病毒灭活。综合起来看,本项目将为卫生保健工作者和公众开发高效、广谱的抗病毒材料做出贡献,并将改变我们对当前和未来疫情的准备和响应能力。技术概述本项目的目标是对新型合成共轭聚合物(CPE)和低聚物(OPEs)之间的分子间相互作用有一个基本的了解具有各种病毒组装体,这些病毒组装体产生它们显著的光激活广谱抗病毒活性。CPE和OPEs最近被证明在灭活导致Covid-19大流行的SARS-CoV-2病毒方面非常有效。该项目的重点是阐明化合物的抗病毒机制,最终目标是指导具有最佳性能的新型材料的合理设计。CPE和OPEs本质上是带电的和两亲的,这使它们能够与多个维里靶相互作用并潜在地破坏其结构,从而破坏其功能。此外,化合物的光活化光敏活性可进一步有助于其抗病毒功效。具体而言,具有不同主链、链长、侧基和端基、电荷密度和分布的CPE和OPEs与几种病毒大分子组装体(包括蛋白质组装体、膜和核酸)相互作用并破坏其结构和功能的倾向。多学科团队将使用一套生物物理和材料表征方法来研究CPE和OPEs与病毒靶标之间的相互作用,从分子结构尺度到宏观性质水平,与密切相关的模拟协同结合。将我们的研究结果与功能测定和抗病毒活性进行比较,将使我们能够阐明这些新型合成抗病毒材料的毒性机制和结构-功能关系。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eva Chi其他文献

Leveraging Students’ Funds of Knowledge in Chemical Engineering Design Challenges Supports Persistence Intentions
利用学生在化学工程设计挑战中的知识储备支持持久性意图
  • DOI:
    10.1021/acs.jchemed.1c00479
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Yan Chen;S. Kang;Jordan O. James;Eva Chi;Jamie R. Gomez;Sang;A. Datye;Vanessa Svihla
  • 通讯作者:
    Vanessa Svihla
Insights and Outcomes from a Revolution in a Chemical Engineering Department
化学工程系革命的见解和成果
The Educative Design Problem Framework: Relevance, Sociotechnical Complexity, Accessibility, and Nondeterministic High Ceilings
教育设计问题框架:相关性、社会技术复杂性、可访问性和不确定性上限
Pandemic Pivots Show Sustained Faculty Change
流行病的转折点显示教师的持续变化
Engineering Students’ Writing Perceptions Impact Their Conceptual Learning
工科学生的写作感知影响他们的概念学习

Eva Chi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eva Chi', 18)}}的其他基金

Development of A Novel Class of Protein Conformation Selective Molecular Sensors
新型蛋白质构象选择性分子传感器的开发
  • 批准号:
    1605225
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Toxicity Mechanism of Biocidal Conjugated Polyelectrolyte Polymers and Oligomers
杀菌共轭聚电解质聚合物和低聚物的毒性机制
  • 批准号:
    1207362
  • 财政年份:
    2012
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Interface-induced misfolding and aggregation of intrinsically disordered proteins
职业:界面诱导的本质无序蛋白质的错误折叠和聚集
  • 批准号:
    1150855
  • 财政年份:
    2012
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

上调间充质干细胞LIGHT、IL-21及 Sig lec-10用于卵巢癌免疫协同增效治疗 的多模态影像学研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
LIGHT/HVEM-亮氨酸轴异常引起蜕膜基质细胞过度衰老致复发流产的机制研究
  • 批准号:
    32370914
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
LIGHT促NLRP3炎症小体活化介导他克莫司所致肾纤维化的作用机制研究
  • 批准号:
    82300855
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
LIGHT-HVEM通路提升CAR-T细胞抗肿瘤活性的机制研究
  • 批准号:
    82202031
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
LIGHT/TNFSF14通路对缺血再灌注肾损伤中细胞铁死亡影响的实验研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
气道上皮细胞经LIGHT/HVEM通路调控哮喘气道微环境内稳态的机制及干预研究
  • 批准号:
    2020A151501040
  • 批准年份:
    2020
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
MSCs通过免疫刺激因子LIGHT介导抗原缺失变异性乳腺癌的免疫效应及机制
  • 批准号:
    LY21H160003
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Light助力中国科研团队提升国际影响力
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    6 万元
  • 项目类别:
    专项基金项目
LIGHT(TNFSF14)诱导子痫前期的机制及其转化医学研究
  • 批准号:
    2019JJ20035
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Light助力中国科研团队提升国际影响力
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    5 万元
  • 项目类别:
    专项基金项目

相似海外基金

Customer discovery and market access planning for light-activated antimicrobial wound care product
光激活抗菌伤口护理产品的客户发现和市场准入规划
  • 批准号:
    10108236
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Collaborative R&D
Getting the green light: How chloroplast gene expression is activated by light
获得批准:叶绿体基因表达如何被光激活
  • 批准号:
    2869544
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
Charting a course towards new light-activated molecules
制定新的光激活分子的路线
  • 批准号:
    2881472
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
CAREER: Stretchable Light-Emitting Polymers with Thermally Activated Delayed Fluorescence
职业:具有热激活延迟荧光的可拉伸发光聚合物
  • 批准号:
    2239618
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Light-activated wound sterilisation prototype development
光激活伤口灭菌原型开发
  • 批准号:
    10070618
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Collaborative R&D
Light-activated therapy for oral epithelial dysplasia
口腔上皮发育不良的光激活治疗
  • 批准号:
    10052165
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Collaborative R&D
Microbiome engineering using light-activated synthetic cells
使用光激活合成细胞进行微生物组工程
  • 批准号:
    2723009
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
Development of Bifunctional and Light Activated ReACT Bioconjugation Reagents via Nitrone Photoisomerization
通过硝酮光异构化开发双功能光激活 ReACT 生物共轭试剂
  • 批准号:
    10389513
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
Light-Activated Group 5 Metal Oxide Nanocomposites as Photocatalysts for Renewable Chemical Feedstocks
光激活第 5 族金属氧化物纳米复合材料作为可再生化学原料的光催化剂
  • 批准号:
    RGPIN-2022-03967
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Bifunctional and Light Activated ReACT Bioconjugation Reagents via Nitrone Photoisomerization
通过硝酮光异构化开发双功能光激活 ReACT 生物共轭试剂
  • 批准号:
    10555205
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了