Collaborative Research: Spin Currents and Spin-orbit Torques in Single Layer Magnetic Systems

合作研究:单层磁系统中的自旋电流和自旋轨道扭矩

基本信息

  • 批准号:
    2105218
  • 负责人:
  • 金额:
    $ 30.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Non-technical AbstractFerromagnetic materials are widely used in digital information storage devices such as hard disk drives, which boast long-term memory, high storage density, and cost-effectiveness. Compared to other semiconductor-based memory devices, the operation speed of hard disk drives is relatively slow, prompting the development of magnetic memories without moving parts. To make such memory technologies competitive requires efficient control of magnetism using electrical currents rather than magnetic fields. In recent years, a novel mechanism called spin-orbit torque has been shown to electrically control magnetism in both ferromagnetic and antiferromagnetic materials—the latter of which are far more prevalent in nature but currently underutilized, despite offering several advantages over their ferromagnetic cousins like potentially higher speed and density. However, the spin-orbit torques generated in multilayer magnetic systems arise from several competing mechanisms that are difficult to disentangle, widening the gap between experiment and theory and preventing device optimization. This collaborative project aims to determine the microscopic origins and behavior of spin-orbit torques generated within single ferromagnetic and antiferromagnetic layers using both theoretical and experimental methods. Success in this research will help optimize spin-orbit torques, thus expediting the development of faster magnetic memory devices used for traditional information storage and for artificial intelligence applications. This project trains graduate and undergraduate students in a variety of research techniques and prepares them for the workforce in science and technology. Planned outreach activities include establishing an online seminar series inviting researchers from underrepresented groups in physics and engineering to give talks combining their frontier research with their personal experience in pursuit of their scientific career.Technical AbstractAchieving efficient electrical control of magnetic order is crucial for the development of memory technology. Spin-orbit torque—which is a transfer of angular momentum from the atomic lattice of crystals to magnetic order under an applied electric field—promises faster, more reliable, and more energy-efficient switching than previous write mechanisms in magnetic memories. While control of magnetism using spin-orbit torque has been demonstrated in various devices, the role of the ferromagnetic and antiferromagnetic layers in generating spin-orbit torques remains unclear, creating inconsistencies between experiment and theory and preventing device optimization. This collaborative project experimentally and theoretically characterizes boundary spin-orbit torques generated within single-layer magnetic materials, eliminating competing mechanisms from adjacent layers. The single-layer magnetic systems include ferromagnets, non-collinear and collinear antiferromagnets. The boundary spin-orbit torques are measured using the magneto-optic-Kerr-effect and the results are theoretically interpreted using both semiclassical models and the first-principles transport calculations. This collaborative research aims to disentangle the spin torque contributions that must also occur in multilayers while paving the way for single layer magnetic memories. It also undertakes the first characterization of spin torques in single antiferromagnetic layers with non-collinear and collinear magnetic order, broadening the role of antiferromagnets in spin-orbit coupled nanostructures. This project trains graduate and undergraduate students in a variety of research techniques such as thin film growth, micro-fabrication, optical detection, first-principles calculations, and semiclassical modeling, preparing them for the workforce in science and technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术抽象的Ferromagnetic材料被广泛用于数字信息存储设备,例如硬盘驱动器,这些磁盘驱动器的长期记忆,高存储密度和成本效益。与其他基于半导体的内存设备相比,硬盘驱动器的操作速度相对较慢,促使磁性记忆的发展而没有运动部件。为了使这种记忆技术竞争需要有效地使用电流而不是磁场来控制磁力。近年来,已经显示出一种称为自旋轨道扭矩的新型机制可以在铁磁和抗铁磁材料中电气控制磁性,后者在本质上更为普遍,但目前未充分利用,优先于其超级磁性表皮,例如潜在的更高的速度和密度。但是,多层磁系统中产生的自旋轨道扭矩是由难以解开的几种竞争机制引起的,从而扩大了实验和理论之间的差距,并防止了设备优化。该协作项目旨在确定使用理论和实验方法在单个铁磁和反铁磁层中产生的自旋轨道扭矩的微观起源和行为。这项研究的成功将有助于优化自旋轨道扭矩,从而加快用于传统信息存储和人工智能应用程序的更快的磁性存储设备的开发。该项目通过各种研究技术培训毕业生和本科生,并为科学技术的劳动力做好准备。计划中的外展活动包括建立一个在线半段系列系列,邀请来自代表性不足的物理和工程团体的研究人员进行谈判,将他们的边界研究与他们的个人经验相结合,以追求他们的科学职业。自旋轨道扭矩(这是角动量从晶体的原子晶格转移到施加的电场下的磁顺序),比磁性记忆中先前的写入机制更快,更可靠,更可靠,更节能的开关。尽管在各种设备中都证明了使用自旋轨道扭矩对磁性的控制,但铁磁和抗铁磁层在产生自旋轨道扭矩中的作用尚不清楚,在实验和理论之间产生不一致并防止设备优化。该协作项目在实验和理论上表征了在单层磁性材料中生成的边界自旋轨道扭矩,从而消除了来自相邻层的竞争机制。单层磁系统包括铁磁性,非共线和共线抗铁磁铁。边界自旋轨道扭矩是使用磁极 - 凯尔效应测量的,结果是使用半经典模型和第一原理传输计算来解释的。这项协作研究旨在解散多层中必须发生的自旋扭矩贡献,同时为单层磁性记忆铺平道路。它还在单个抗铁磁层中首次表征自旋扭矩,具有非连续性和共线磁性,扩大了抗铁磁体在自旋轨道耦合纳米结构中的作用。该项目通过各种研究技术培训毕业生和本科生,例如薄膜的增长,微型制作,光学检测,第一原理计算和半经典模型,为科学和技术的劳动力做准备。该奖项奖通过评估NSF的法定任务,并通过评估了基金会的范围,并反映了NSF的法定任务,并已被认为是基金会的范围。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of non-uniform magnetization perturbation on spin-orbit torque measurements
非均匀磁化扰动对自旋轨道扭矩测量的影响
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin Fan其他文献

Moonrake chip - GALS demonstrator in 40 nm CMOS technology
Moonrake 芯片 - 采用 40 nm CMOS 技术的 GALS 演示器
  • DOI:
    10.1109/issoc.2011.6089693
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Krstic;Xin Fan;E. Grass;C. Heer;Birgit Sanders;L. Benini;M. R. Kakoee;Alessandro Strano;D. Bertozzi
  • 通讯作者:
    D. Bertozzi
Reducing Electromagnetic Interference Using Globally Asynchronous Locally Synchronous Approach
使用全局异步局部同步方法减少电磁干扰
  • DOI:
    10.1166/jolpe.2010.1069
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Krstic;Tomasz Król;Xin Fan;E. Grass
  • 通讯作者:
    E. Grass
Asynchronous and GALS Design -Overview and Perspectives
异步和 GALS 设计 - 概述和观点
Amelioration of Coagulation Disorders and Inflammation by Hydrogen-Rich Solution Reduces Intestinal Ischemia/Reperfusion Injury in Rats through NF-κB/NLRP3 Pathway.
富氢溶液改善凝血障碍和炎症,通过 NF-κB/NLRP3 途径减少大鼠肠道缺血/再灌注损伤。
  • DOI:
    10.1155/2020/4359305
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Ling Yang;Yan Guo;Xin Fan;Ye Chen;Bo Yang;Ke-Xuan Liu;Jun Zhou
  • 通讯作者:
    Jun Zhou
Robust nonconforming polynomial finite elements over quadrilaterals
四边形上的鲁棒非相容多项式有限元

Xin Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xin Fan', 18)}}的其他基金

CAREER: Novel Spintronics Devices based on symmetry-broken systems
职业:基于对称破缺系统的新型自旋电子器件
  • 批准号:
    2047118
  • 财政年份:
    2021
  • 资助金额:
    $ 30.28万
  • 项目类别:
    Continuing Grant
EAGER-Generation of Perpendicularly Polarized Spin Current from the Spin-Orbit Effects in Ferromagnetic Thin Film Structures for Memory Applications
存储器应用中的铁磁薄膜结构中的自旋轨道效应急切地产生垂直极化的自旋电流
  • 批准号:
    1738679
  • 财政年份:
    2017
  • 资助金额:
    $ 30.28万
  • 项目类别:
    Standard Grant

相似国自然基金

旋转剪切作用下中煤级烟煤变形产气机理研究
  • 批准号:
    42302204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
半刚性转子弹性对行波旋转超声电机输出性能影响机制的研究
  • 批准号:
    52365006
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于环形孔径旋转调制的时间编码成像方法研究
  • 批准号:
    12375307
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
跨声串列转子叶尖泄漏流/激波相互作用及旋转失速机理研究
  • 批准号:
    52306057
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
界面连接高速转子旋转惯性载荷分布演变机理与仿真方法研究
  • 批准号:
    52305088
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 30.28万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 30.28万
  • 项目类别:
    Continuing Grant
Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
  • 批准号:
    2225370
  • 财政年份:
    2023
  • 资助金额:
    $ 30.28万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
  • 批准号:
    2328830
  • 财政年份:
    2023
  • 资助金额:
    $ 30.28万
  • 项目类别:
    Continuing Grant
Collaborative Research: Spin Transport in Nonrelatisvistically Spin-split Antiferromagnets
合作研究:非相对论自旋分裂反铁磁体中的自旋输运
  • 批准号:
    2316665
  • 财政年份:
    2023
  • 资助金额:
    $ 30.28万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了