Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic

合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计

基本信息

  • 批准号:
    2328830
  • 负责人:
  • 金额:
    $ 37.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Non-technical Description:Modern life has been transformed by electronics based on moving electrons through nanoscale semiconductor devices. Spintronics combine electronics with spin, an intrinsic property of elementary particles, making possible even smaller devices that operate at higher speeds and consume less energy. Spintronics could thus revolutionize electronics for data processing, communication, and storage. This project spans design and synthesis of novel materials to fabrication and characterization of advanced spintronic devices. The team will synthesize custom-designed semiconducting alloys to read data more efficiently in a spintronic logic circuit. A fundamental understanding of the structural-performance relationship for spintronic materials will be gained through characterization of structure and materials properties. Collectively, the outcome of this project is expected to be information on how to manufacture a highly efficient spintronic device. The team’s workforce development plan has a central theme of technology communication. The approach seeks to educate and develop faculty, students, and the future workforce to be leaders in the semiconductor industry. Undergraduate and graduate students from five institutions will be trained to better communicate and identify transferable skills to make themselves marketable to semiconductor industry employers. This training will serve as a blueprint for the launch of a micro-credential in technology communication with integrated Industry-Recognized Credentials, and this project will support 75 students to receive this credential. Outreach events will target both undergraduate and K-12 audiences to raise awareness of jobs in the semiconductor industry. These activities will be reinforced by workforce development activities and industry partnerships. Technical Description:Spin gapless semiconductors (SGS) are a new class of spintronic materials that have a finite bandgap in their electronic band structure for electrons with one spin and a zero bandgap for electrons with the other spin, which is advantageous for spintronic applications. Current SGS compounds often display atomic defects and disordering, crucial elements for the material's spin polarization and injection capabilities. In order to harness the unique advantage of SGS as efficient spin injectors, which is indispensable for spin logic devices such as the magneto-electric spin-orbit (MESO) logic, the team is using Mn2CoAl as a platform to develop a strategy that stabilizes the near-SGS behavior through understanding and manipulation of influences from composition, processing, and interfaces. This is a collaborative material-process-device co-design project. At the materials level, the team is determining the relationship between chemical composition, phases, atomic ordering, and resultant electric and magnetic transport properties. On the thin film synthesis level, the team is performing low-energetic, epitaxial-quality film growth with sputter beam epitaxy. Lessons learned from the fundamental materials research will be used to avoid deleterious defects via composition and processing control. At the device level, the team is nanopatterning thin SGS layers into local spin injection junctions for the spin-to-charge readout side of the MESO device. Overall, this research will not only develop a strategy to use SGS materials for spintronic devices but also deepen current understanding on how materials composition, processing, and interfaces collectively impact the performance of a spin injector.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:现代生活已经被电子技术所改变,电子技术是通过纳米级半导体器件来移动电子的。自旋电子学联合收割机将电子学与基本粒子的固有属性自旋结合起来,使更小的设备以更高的速度运行并消耗更少的能量成为可能。因此,自旋电子学可以彻底改变数据处理、通信和存储的电子学。该项目涵盖了新型材料的设计和合成,以及先进自旋电子器件的制造和表征。该团队将合成定制设计的半导体合金,以便在自旋电子逻辑电路中更有效地读取数据。通过对自旋电子材料的结构和性能的表征,将对自旋电子材料的结构与性能的关系有一个基本的了解。总的来说,这个项目的成果预计将是如何制造一个高效的自旋电子器件的信息。该团队的劳动力发展计划以技术交流为中心主题。该方法旨在教育和发展教师,学生和未来的劳动力成为半导体行业的领导者。来自五所院校的本科生和研究生将接受培训,以更好地沟通和识别可转移的技能,使自己适合半导体行业的雇主。该培训将作为推出技术交流微型证书的蓝图,该证书具有综合行业认可的证书,该项目将支持75名学生获得该证书。外联活动将针对本科生和K-12观众,以提高半导体行业工作的意识。这些活动将通过劳动力发展活动和行业伙伴关系得到加强。技术描述:自旋无带隙半导体(SGS)是一类新的自旋电子材料,其电子能带结构中具有有限的带隙,对于具有一个自旋的电子具有有限的带隙,而对于具有另一个自旋的电子具有零带隙,这对于自旋电子应用是有利的。目前的SGS化合物通常显示原子缺陷和无序,这是材料自旋极化和注入能力的关键因素。为了利用SGS作为高效自旋注入器的独特优势,这对于磁电自旋轨道(MESO)逻辑等自旋逻辑器件是不可或缺的,该团队正在使用Mn 2CoAl作为平台,通过理解和操纵成分,处理和界面的影响来开发稳定近SGS行为的策略。这是一个材料-工艺-设备协同设计的项目。在材料层面,该团队正在确定化学成分、相、原子有序性以及由此产生的电和磁传输特性之间的关系。在薄膜合成层面,该团队正在使用溅射束外延进行低能量、外延质量的薄膜生长。从基础材料研究中吸取的经验教训将用于通过成分和工艺控制来避免有害缺陷。在器件层面,该团队正在将薄SGS层纳米图案化为局部自旋注入结,用于MESO器件的自旋到电荷读出侧。总体而言,这项研究不仅将制定一项战略,使用SGS材料的自旋电子器件,但也加深了目前的理解,如何材料的组成,加工和接口共同影响的性能自旋injector.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Hauser其他文献

Impact of environmental variables on the degradation of photovoltaic components and perspectives for the reliability assessment methodology
  • DOI:
    10.1016/j.solener.2020.02.020
  • 发表时间:
    2020-03-15
  • 期刊:
  • 影响因子:
  • 作者:
    Yadong Lyu;Andrew Fairbrother;Mengyan Gong;Jae Hyun Kim;Xiaohong Gu;Michael Kempe;Scott Julien;Kai-Tak Wan;Sophie Napoli;Adam Hauser;Greg O'Brien;Yu Wang;Roger French;Laura Bruckman;Liang Ji;Kenneth Boyce
  • 通讯作者:
    Kenneth Boyce

Adam Hauser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Hauser', 18)}}的其他基金

NRT: Alabama Collaborative for Contemporary Education in Precision Timing (ACCEPT)
NRT:阿拉巴马州精密计时当代教育合作组织 (ACCEPT)
  • 批准号:
    2244074
  • 财政年份:
    2023
  • 资助金额:
    $ 37.16万
  • 项目类别:
    Standard Grant
CAREER: A roadmap to atomically ordered complex materials via control of entropic mixing
职业:通过控制熵混合实现原子有序复杂材料的路线图
  • 批准号:
    2047251
  • 财政年份:
    2021
  • 资助金额:
    $ 37.16万
  • 项目类别:
    Continuing Grant
I-Corps: Chemical sensors for airborne detection
I-Corps:用于机载检测的化学传感器
  • 批准号:
    1931656
  • 财政年份:
    2019
  • 资助金额:
    $ 37.16万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 37.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 37.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 37.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 37.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
  • 批准号:
    2328741
  • 财政年份:
    2023
  • 资助金额:
    $ 37.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
  • 批准号:
    2328906
  • 财政年份:
    2023
  • 资助金额:
    $ 37.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
  • 批准号:
    2328908
  • 财政年份:
    2023
  • 资助金额:
    $ 37.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
  • 批准号:
    2328947
  • 财政年份:
    2023
  • 资助金额:
    $ 37.16万
  • 项目类别:
    Continuing Grant
FuSe/Collaborative Research: Heterogeneous Integration in Power Electronics for High-Performance Computing (HIPE-HPC)
FuSe/合作研究:用于高性能计算的电力电子异构集成 (HIPE-HPC)
  • 批准号:
    2329063
  • 财政年份:
    2023
  • 资助金额:
    $ 37.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329087
  • 财政年份:
    2023
  • 资助金额:
    $ 37.16万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了