NSF-BSF:Influence of cohesion enhancing elements, impurities and hydrogen/deuterium at grain boundaries and heterophase interfaces on embrittlement of additive-manufactured steels

NSF-BSF:晶界和异相界面处的内聚增强元素、杂质和氢/氘对增材制造钢脆化的影响

基本信息

  • 批准号:
    2105362
  • 负责人:
  • 金额:
    $ 39.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Non-Technical Summary:Exposure of steels to hydrogen (1H) during manufacturing, storage or service may embrittle them, potentially resulting in catastrophic failures. Therefore, hydrogen embrittlement (HE) of steels is of concern in 1H energy systems, automobiles, aviation, marine applications, bridges, transportation infrastructure, and nuclear reactors. 1H concentrations in the atomic ppm range are sufficient to embrittle high-strength steels. 1H trapping at defects, grain boundaries, heterophase interfaces, and elastic stress-fields, affects its solubility, diffusivity, and the susceptibility of steels to HE. Additively manufactured (AM) steels may be more susceptible to HE than their counterpart wrought steels due to different microstructures, porosity levels, and residual stress levels. The understanding of 1H ingress, local concentrations, trapping vs. mobile 1H, and its 3D spatial distributions, is important for chemical and microstructural design of next-generation, hydrogen-resistant steels. The PIs are proposing a systematic study starting with the design of a novel precipitation-hardened stainless steel for selective laser melting; controlled powder synthesis and characterization; AM of steels by both powder-bed fusion SLM and directed energy deposition laser engineered net shaping; chemical, microstructural, and mechanical characterization of AM steels compared to their wrought counterpart steel, before and after 1H or 2D electrochemical charging. Scientific and technological strategies and alloy design principles will directly support the development of AM for industrial manufacturing. The scientific and technological strategies and alloy design principles will support the development of AM for industrial manufacturing. Our projects will provide multi-dimensional training for students and postdocs, including processing-structure-properties relationships, the fundamental paradigm of materials science & engineering, physical metallurgy and alloy design, advanced atomic-level structural/chemical characterization, first-principles calculations, HE, mechanical properties evaluation and failure analysis.Technical Summary:The overarching scientific theme of the proposed research is to understand the effects of different elements, impurities and either 1H or 2D, on the cohesive energies of GBs and heterophase interfaces concerning HE in AM materials, focusing on PH stainless steels derived from the classical 17-4 PH steel. Wrought 17-4PH steel is included to provide a reference basis for comparison with the AM processed steels, i.e., QT17-4+. This will enable us to better understand the influence of grain- and heterophase-boundary segregation of alloying elements, impurities, and 1H or 2D, and the effects of different processing conditions (e.g., heating rates) on the microstructures (GB characteristics of martensite lath and prior austenite grain-boundaries), GB cohesion, and susceptibility to HE. From this detailed understanding, we will develop mitigation strategies for embrittlement of AM and/or welded components and use alloy design principles to optimize interfacial cohesion of the defects critical for HE. The fundamental data generated will pave the way to next-generation steel designs and support the industrial revolution created by the development of AM. The PIs will develop an online graduate-level course, Additive Manufacturing of Metallic Materials: Theory and Practice, for teaching at Tel Aviv University and Northwestern. Students will form groups of four and apply topics learned to a rapid manufacturing design project. Students will gain significant experience with writing and presenting to a technical audience. At NUCAPT, the PIs will continue undergraduate student projects through the NSF-REU programs of the NSF-funded Materials Research Science and Engineering Center, SHyNE resource, programs aimed at women and underrepresented minorities, work-study and senior project students, national universities, national laboratories, and industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结:在制造、储存或服务过程中,钢暴露于氢(1H)可能会使其变脆,可能导致灾难性故障。因此,钢的氢脆(HE)在1H能源系统、汽车、航空、海洋应用、桥梁、交通基础设施和核反应堆中受到关注。原子ppm范围内的1H浓度足以使高强度钢脆化。1H在缺陷、晶界、异相界面和弹性应力场处的捕获影响其溶解度、扩散率和钢对HE的敏感性。增材制造(AM)钢可能比其对应的锻钢更容易受到HE的影响,这是由于不同的微观结构、孔隙率水平和残余应力水平。了解氢进入、局部浓度、捕获与移动的氢及其三维空间分布,对于下一代耐氢钢的化学和微观结构设计非常重要。PI提出了一项系统的研究,首先是设计一种新型的沉淀硬化不锈钢,用于选择性激光熔化;控制粉末合成和表征;通过粉末床熔融SLM和定向能量沉积激光工程净成形对钢进行AM; AM钢与其锻造对应钢相比的化学、显微组织和机械特性,在1H或2D电化学充电之前和之后。科学技术战略和合金设计原则将直接支持工业制造AM的发展。科学技术战略和合金设计原则将支持AM工业制造的发展。我们的项目将为学生和博士后提供多维培训,包括加工-结构-性能关系、材料科学工程的基本范式&、物理冶金和合金设计、高级原子级结构/化学表征、第一性原理计算、HE、力学性能评估和失效分析。技术总结:拟议研究的首要科学主题是了解不同元素,杂质和1H或2D的影响,对AM材料中与HE有关的晶界和异相界面的结合能进行了研究,重点是从经典的17-4 PH钢衍生的PH不锈钢。包括锻造17-4PH钢以提供用于与AM处理的钢进行比较的参考基础,即,QT17-4+。这将使我们能够更好地理解合金元素、杂质和1H或2D的晶粒和异相边界偏析的影响,以及不同加工条件(例如,加热速率)对微观结构(马氏体板条和原奥氏体晶界的GB特性)、GB内聚力和对HE的敏感性的影响。从这个详细的了解,我们将制定缓解战略的脆化AM和/或焊接组件,并使用合金设计原则,以优化界面的凝聚力的缺陷,关键的HE。生成的基础数据将为下一代钢铁设计铺平道路,并支持AM发展所带来的工业革命。PI将开发一个在线研究生课程,金属材料的增材制造:理论与实践,用于特拉维夫大学和西北大学的教学。学生将组成四人一组,并将所学的主题应用于快速制造设计项目。学生将获得写作和向技术观众展示的重要经验。在NUCAPT,PI将继续通过NSF资助的材料研究科学与工程中心的NSF-REU项目,SHYNE资源,针对妇女和代表性不足的少数民族,勤工俭学和高级项目学生,国立大学,国家实验室,该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Seidman其他文献

Ocean Shipping Alliances: The Wave of the Future?
  • DOI:
    10.1057/palgrave.ijme.9100025
  • 发表时间:
    2001-12-17
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Edward J Sheppard;David Seidman
  • 通讯作者:
    David Seidman
Point Defects in Materials Part II: Applications to Different Materials Problems
  • DOI:
    10.1557/s0883769400055299
  • 发表时间:
    2013-11-29
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    David Seidman;Donglu Shi
  • 通讯作者:
    Donglu Shi
Quality of life indicators in U.S. Metropolitan Areas, 1970
  • DOI:
    10.1007/bf00353127
  • 发表时间:
    1977-01-01
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    David Seidman
  • 通讯作者:
    David Seidman

David Seidman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Seidman', 18)}}的其他基金

Atomistic Studies of Concentrated Multicomponent Nickel-Based Alloys Utilizing Atom-Probe Tomography and Vacancy-Mediated Lattice Kinetic Monte Carlo Simulations
利用原子探针断层扫描和空位介导的晶格动力学蒙特卡罗模拟对浓多组分镍基合金进行原子研究
  • 批准号:
    1610367
  • 财政年份:
    2016
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Continuing Grant
An Atom-Probe Tomography and Lattice Kinetic Monte Carlo Study of Phase Separation in Ni-Al-Based Alloys from the Atomic Scale Up to Link with Continuum Theories
镍铝合金相分离的原子探针断层扫描和晶格动力学蒙特卡罗研究,从原子尺度到与连续体理论的联系
  • 批准号:
    1207539
  • 财政年份:
    2012
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Continuing Grant
A New Experimental/Computational Approach for Predicting Phase Evolution and Defect Thermodynamics: Application to Concentrated Multicomponent Ni-Based Superalloys
预测相演化和缺陷热力学的新实验/计算方法:在浓多组分镍基高温合金中的应用
  • 批准号:
    0804610
  • 财政年份:
    2008
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Continuing Grant
50th Anniversary of Atomic Resolution Microscopy Conference
原子分辨率显微镜会议 50 周年
  • 批准号:
    0525743
  • 财政年份:
    2005
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Local-Electrode Atom-Probe (LEAP) Microscope (An Atom-Probe Tomograph) For Three-Dimensional Nanoscale Characterization of Materials
MRI:获取局部电极原子探针 (LEAP) 显微镜(原子探针断层扫描仪),用于材料的三维纳米级表征
  • 批准号:
    0420532
  • 财政年份:
    2004
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Standard Grant
Temporal Evolution of Microstructures on a Nanoscale: Experiments and Simulations
纳米尺度上微观结构的时间演化:实验和模拟
  • 批准号:
    0241928
  • 财政年份:
    2003
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Continuing Grant
Participant Support for International Field Emission Symposium: 2000, Pittsburgh,PA, July 23-29, 2000
国际场发射研讨会参与者支持:2000,宾夕法尼亚州匹兹堡,2000 年 7 月 23-29 日
  • 批准号:
    0084702
  • 财政年份:
    2000
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Standard Grant
Atomic Scale Studies of Heterophase Metallic Interfaces
异相金属界面的原子尺度研究
  • 批准号:
    9728986
  • 财政年份:
    1998
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Atomic Scale Studies of the Dissolution of Thin Metallic Films: Formation of Surface Alloy Phase
美法合作研究:金属薄膜溶解的原子尺度研究:表面合金相的形成
  • 批准号:
    9603281
  • 财政年份:
    1997
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Standard Grant
Acquisition of a Multi-Impact Position-Sensitive Detector for a Tomographic Atom-Probe: Atomic Scale Chemical Analysis
获取用于断层扫描原子探针的多重冲击位置敏感探测器:原子尺度化学分析
  • 批准号:
    9625903
  • 财政年份:
    1996
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Continuing Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Standard Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
  • 批准号:
    2400200
  • 财政年份:
    2024
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
  • 批准号:
    2401159
  • 财政年份:
    2024
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 39.09万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了