EAGER: Exploring the Quantum-Mechanical Basis of Odorant Detection by Olfactory Receptors
EAGER:探索嗅觉受体气味检测的量子力学基础
基本信息
- 批准号:2105612
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The sense of smell is a significant physiological advantage exploited by many organisms including humans and it may be adversely affected by illnesses, such as caused by viral infections as exemplified recently by the COVID-19 disease. Yet, the mechanism by which organisms are able to detect and differentiate between thousands of different odors, which are transmitted by small chemical molecules named odorants, is currently not known. There are two competing hypotheses regarding the first steps in the complex odorant detection reaction, which is carried out by dedicated receptors in specialized olfactory cells. The first hypothesis assumes that odors are encoded in the shape of odorant molecules and their shapes are identified by receptors’ interior cavities into which odorants fit similar to how a correct key fits into a lock. The second hypothesis considers that smell is related to odorant molecules vibrating at specific frequencies and these molecular vibrations are probed and detected by receptors through a complex, quantum mechanics-based electron tunneling mechanism. This project aims at exploring the vibrational hypothesis of odor detection by exploiting cutting edge quantum-mechanics based experimental measurements and computational modeling of the interaction between vibrating odorants and tunneling electrons in the absence and presence of olfactory receptors. Quantum mechanics-based modeling of the interaction between vibrating odorants and electrons will accompany experiments and will clarify the experimental results. This exploratory research will significantly contribute to an understanding of one of the most fundamental biological sensing mechanisms and may help in future developments of artificial “noses” with near single-molecule detection sensitivity. The project will provide ample opportunities for training of postdoctoral, PhD and undergraduate students in multidisciplinary fields involving quantum chemistry, nanotechnology and bioengineering.This research will contribute to the understanding of one of the frontiers of quantum effects in biology with a set of experimental and theoretical investigations aimed at providing evidence confirming or rejecting the model of Quantum Mechanical-based olfaction mechanism. This model, known as the “Vibrational Theory of Olfaction, VTO” relates molecules’ scent to their vibrational spectra and postulates that odor recognition involves quantum mechanical inelastic tunneling of electrons through the odorant-bound receptor. However, this mechanism has remained unproven and controversial. This project will use scanning tunneling microscopy (STM) to measure the tunneling current in the absence and presence of odorant molecules in the nano-junction as well as the dependence of the tunneling current on the bias voltage (tunneling spectroscopy). In the second phase of the project, Odorants will be reconstituted in lipid nanodiscs that will be attached to a conductive surface for STM measurements aimed at capturing inelastic electron tunneling. In addition, computational studies of the inelastic tunneling in the presence of odorant molecules in the tunneling junctions will be used to model the experimental conditions and to provide microscopic understanding of electron tunneling. The inelastic effects calculated will be used to compare with experimental data and provide insight on the roles the vibrational modes. Inelastic electron tunneling through odorant molecules will be studied with state-of-the-art quantum mechanical formalism. This project is supported by the Molecular Biophysics cluster of the Molecular and Cellular Biosciences Division in the Directorate for Biological SciencesThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
嗅觉是包括人类在内的许多生物体利用的重要生理优势,并且可能受到疾病的不利影响,例如由病毒感染引起的疾病,如最近的COVID-19疾病。然而,生物体能够检测和区分数千种不同气味的机制目前尚不清楚,这些气味是由称为气味剂的小化学分子传播的。关于复杂气味检测反应的第一步,有两种相互竞争的假设,该反应是由专门嗅觉细胞中的专门受体进行的。第一个假设假设气味是以气味分子的形状编码的,它们的形状是由受体的内腔识别的,气味分子适合于类似于正确的钥匙如何插入锁。第二种假设认为气味与以特定频率振动的气味分子有关,这些分子振动通过复杂的基于量子力学的电子隧道机制被受体探测和检测。该项目旨在探索气味检测的振动假设,通过利用基于量子力学的实验测量和计算建模,在嗅觉受体存在和不存在的情况下,振动气味和隧道电子之间的相互作用。振动气味剂和电子之间相互作用的量子力学模型将伴随实验,并将澄清实验结果。这项探索性的研究将大大有助于理解最基本的生物传感机制之一,并可能有助于未来开发具有近单分子检测灵敏度的人工“鼻子”。该项目将为博士后、博士和本科生提供大量的机会,涉及量子化学、纳米技术和生物工程等多学科领域,本研究将有助于理解生物学中量子效应的前沿之一,并通过一系列实验和理论研究,旨在为证实或否定基于量子力学的嗅觉机制模型提供证据。该模型被称为“嗅觉振动理论,VTO”,将分子的气味与其振动光谱联系起来,并假设气味识别涉及电子通过气味结合受体的量子力学非弹性隧穿。然而,这一机制尚未得到证实,也存在争议。 该项目将使用扫描隧道显微镜(STM)来测量纳米结中存在和不存在气味分子时的隧道电流以及隧道电流对偏置电压的依赖性(隧道光谱学)。在该项目的第二阶段,气味剂将在脂质纳米盘中重组,这些脂质纳米盘将附着在导电表面上,用于STM测量,旨在捕获非弹性电子隧穿。 此外,计算研究的非弹性隧穿在隧道结中的气味分子的存在下,将被用来模拟实验条件,并提供微观理解的电子隧穿。计算的非弹性效应将被用来与实验数据进行比较,并提供洞察力的振动模式的作用。非弹性电子隧穿通过气味分子将研究与国家的最先进的量子力学形式主义。该项目由生物科学理事会分子和细胞生物科学部的分子生物物理学集群支持。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Piotr Marszalek其他文献
Accurate Refolding of Experimentally Determined Protein Mechanical Unfolding Intermediates via All-Atom Molecular Dynamics Simulations
- DOI:
10.1016/j.bpj.2017.11.2874 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
David Wang;Piotr Marszalek - 通讯作者:
Piotr Marszalek
Full Reconstruction of a Vectorial Protein Folding Pathway by Afm and Smd: Insights Into the Co-Translational Folding of the Nascent-Polypeptide-Chain
- DOI:
10.1016/j.bpj.2010.12.2829 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Whasil Lee;Xiancheng Zeng;Huan-Xiang Zhou;Vann Bennett;Weitao Yang;Piotr Marszalek - 通讯作者:
Piotr Marszalek
Piotr Marszalek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Piotr Marszalek', 18)}}的其他基金
Transition To Excellence: From Single-Molecule Force Spectroscopy to Single-Particle Cryogenic Electron Microscopy
向卓越过渡:从单分子力谱到单粒子低温电子显微镜
- 批准号:
2118357 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Workshop: Progress and Prospects of Single Molecule Force Spectroscopy in Biological and Chemical Sciences Workshop; May 30 - June 2, 2019; Durham, North Carolina
研讨会:单分子力谱在生物化学科学中的进展与展望研讨会;
- 批准号:
1856726 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Molecular Mechanisms of Spontaneous and Hsp 70-assisted Renaturation of Misfolded Proteins
错误折叠蛋白自发复性和 Hsp 70 辅助复性的分子机制
- 批准号:
1817556 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Vectorial Folding of Large, Multidomain Proteins
大型多域蛋白质的矢量折叠
- 批准号:
1517245 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Investigating DNA Mismatch Repair Through Single-Molecule Approaches
通过单分子方法研究 DNA 错配修复
- 批准号:
1244297 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Vectorial Folding of Proteins and Nascent Polypeptide Chains by AFM and Computer Simulations
通过 AFM 和计算机模拟进行蛋白质和新生多肽链的矢量折叠
- 批准号:
1052208 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Investigating Conformations of Single Polysaccharides and Nucleic Acids by Force Spectroscopy
通过力谱研究单多糖和核酸的构象
- 批准号:
0717770 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
An AFM Study of DNA Damage and Repair
DNA 损伤与修复的 AFM 研究
- 批准号:
0450835 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Force-induced Conformational Transitions in Single Polysaccharide Molecules by AFM
通过 AFM 力诱导单多糖分子的构象转变
- 批准号:
0243360 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Force-induced Conformational Transitions in Single Polysaccharide Molecules by AFM
通过 AFM 力诱导单多糖分子的构象转变
- 批准号:
0110093 - 财政年份:2001
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Exploring Changing Fertility Intentions in China
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Exploring Novel Phenomena in Correlated Quantum Systems
探索相关量子系统中的新现象
- 批准号:
2889881 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Exploring quantum correlations in superconducting terahertz emitter
探索超导太赫兹发射器中的量子相关性
- 批准号:
23K17747 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
CREST-PRP: Exploring the Quantum Potential Energy Surface of Water and Aqueous Solutions
CREST-PRP:探索水和水溶液的量子势能面
- 批准号:
2329339 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Testing the Equivalence Principle in Quantum Regime and Exploring the Quantum Nature of Gravity
测试量子体系中的等效原理并探索引力的量子本质
- 批准号:
23H00106 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Exploring the Ho ion, from quantum playground to technology enabler
探索 Ho 离子,从量子游乐场到技术推动者
- 批准号:
2850684 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Exploring the Properties of Quantum Many-Body Scar States in Dipolar Gases
探索偶极气体中量子多体疤痕态的性质
- 批准号:
2308540 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Exploring novel quantum phenomena induced by spin-orbit coupling and quantum interference effects
探索自旋轨道耦合和量子干涉效应引起的新颖量子现象
- 批准号:
23KJ0783 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Exploring quantum materials using extreme conditions of magnetic field and applied pressure
利用磁场和施加压力的极端条件探索量子材料
- 批准号:
2879723 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Exploring spin coherence engineering in group IV semiconductor quantum structures
探索 IV 族半导体量子结构中的自旋相干工程
- 批准号:
23H05455 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Exploring topological and quantum effects in ferromagnetic Weyl semimetals for spintronic devices
探索用于自旋电子器件的铁磁外尔半金属的拓扑和量子效应
- 批准号:
22KF0035 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




