Exploring the Properties of Quantum Many-Body Scar States in Dipolar Gases

探索偶极气体中量子多体疤痕态的性质

基本信息

  • 批准号:
    2308540
  • 负责人:
  • 金额:
    $ 75.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

The PI and graduate students recently discovered a quantum version of the famous Archimedes screw. Known from antiquity as a device to transport water (or grain) up elevations, the device relies on the “chiral” property of the screw: Rotating it moves water in one direction even though the screw periodically returns to its same orientation. The group’s quantum Archimedes screw consists of atoms confined into a one-dimensional tube of light. Increasing a magnetic field “turns” the screw by causing the atoms to scatter from each other with periodically increasing and decreasing probabilities. This serves to pump the atoms’ energy to higher and higher levels, just like the traditional screw can pump water up to great heights. In the past, when this was attempted with non-magnetic atoms, the screw collapsed---the atoms fell out of the light tube by forming unwanted molecular states. However, the PI and graduate students recently discovered that atoms that are strongly magnetic and set to repel each other do not form these molecules. That allowed the research group to complete these topological pumping cycles for the first time and reach so-called “quantum many-body scar states” for the first time. This research program will explore the properties of these scar states, which are atypical, highly excited non-thermal states of quantum matter. Specifically, their momentum distributions will be measured to better understand the nature of the correlations between the atoms when in these states of matter. The PI and graduate students will also rapidly compress these gases to observe their response to extreme conditions, which is often a good way to learn more about a quantum state of matter. Investigating such states can teach us about new ways in which quantum matter may exist away from regimes of ultralow temperatures. This knowledge helps guide the group toward methods to protect and store quantum information for use in a quantum computer or sensing device. This project will serve as an excellent training ground for the next generation of quantum engineers. Moreover, the PI will start a chapter of the Warrior-Scholar Project for the first time at Stanford to better integrate our diverse and talented veteran population into programs of higher education. The PI and graduate students will capitalize on their discovery of a new type of quantum many-body scar state in topologically pumped, dipolar-stabilized 1D gases of dysprosium. The research group plans to extend the frontier of quantum simulation by using a unique experimental system to explore the novel properties of these scar states, both in and out of equilibrium. Nearly integrable systems do not immediately relax to thermal equilibrium, but can persist in highly non- thermal (prethermal) steady states, characterized by the “rapidities” of emergent quasiparticle excitations. In strongly interacting integrable systems, the rapidity distribution of quasiparticles can behave differently from the momentum distribution of the microscopic particles. This research group has gained the experimental capability to measure the rapidity distributions of 1D dipolar quantum gases. The PI and graduate students will conduct a program to utilize both momentum and rapidity distribution measurements to explore the properties of these dipolar quantum many-body scar states, both in steady state and quenched far away from equilibrium.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PI和研究生最近发现了著名的阿基米德螺旋的量子版本。 从古代就被称为一种将水(或谷物)输送到高处的装置,该装置依赖于螺旋的“手性”特性:旋转它使水沿一个方向移动,即使螺旋周期性地返回到同一方向。 该小组的量子阿基米德螺旋由被限制在一维光管中的原子组成。 增加磁场,使原子以周期性增加和减少的概率相互散射,从而“转动”螺旋。 这有助于将原子的能量泵到越来越高的水平,就像传统的螺杆可以将水泵到很高的高度一样。 在过去,当用非磁性原子进行这种尝试时,螺旋崩溃了--原子通过形成不需要的分子状态而从光管中脱落。 然而,PI和研究生最近发现,具有强磁性并相互排斥的原子不会形成这些分子。 这使得研究小组首次完成了这些拓扑泵浦循环,并首次达到了所谓的“量子多体疤痕状态”。 这项研究计划将探索这些疤痕状态的性质,这些疤痕状态是量子物质的非典型的,高度激发的非热状态。 具体来说,它们的动量分布将被测量,以更好地理解处于这些物质状态时原子之间相关性的性质。 PI和研究生还将快速压缩这些气体,以观察它们对极端条件的反应,这通常是了解更多关于物质量子态的好方法。 研究这种状态可以告诉我们量子物质可能存在于超低温状态之外的新方式。 这些知识有助于指导该小组研究保护和存储量子信息的方法,以便在量子计算机或传感设备中使用。 该项目将成为下一代量子工程师的绝佳培训基地。 此外,PI将首次在斯坦福大学启动一个学者项目的章节,以更好地将我们多样化和有才华的退伍军人融入高等教育项目。PI和研究生将利用他们在拓扑泵浦、偶极稳定的1D镝气体中发现的一种新型量子多体疤痕态。该研究小组计划通过使用一个独特的实验系统来探索这些疤痕状态的新特性来扩展量子模拟的前沿,无论是处于平衡状态还是处于平衡状态。 近可积系统不会立即松弛到热平衡,但可以保持在高度非热(预热)稳态,其特征是涌现准粒子激发的“快速性”。在强相互作用的可积系统中,准粒子的快度分布可能与微观粒子的动量分布不同。本研究组已具备测量一维偶极量子气体快度分布的实验能力。 PI和研究生将开展一项计划,利用动量和快度分布测量来探索这些偶极量子多体疤痕状态的性质,无论是在稳态还是远离平衡的淬火。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Lev其他文献

Willingness-to-cede behaviour in sustainable supply chain coordination
可持续供应链协调中的让步行为意愿
Customization or jailbreaking for bloatware: strategic impacts of consumer-initiated behavior of software products
针对冗余软件的定制化或越狱:消费者发起的软件产品行为的战略影响
  • DOI:
    10.1016/j.eswa.2025.128434
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Zhitang Li;Benjamin Lev
  • 通讯作者:
    Benjamin Lev
Optimal buy-online-and-pick-up-in-store strategies in the livestreaming selling context
直播销售情境下的最佳线上购买线下提货策略
A prospect theory-based group decision approach considering consensus for portfolio selection with hesitant fuzzy information
考虑犹豫模糊信息投资组合选择共识的基于前景理论的群决策方法
  • DOI:
    10.1016/j.knosys.2018.12.029
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Xiaoyang Zhou;Liqin Wang;Huchang Liao;Shouyang Wang;Benjamin Lev;Hamido Fujita
  • 通讯作者:
    Hamido Fujita
Optimal trade-off of integrated river basin water resources allocation considering water market: A bi-level multi-objective model with conditional value-at-risk constraints
考虑水市场的流域水资源综合配置最优权衡:带条件风险价值约束的双层多目标模型
  • DOI:
    10.1016/j.cie.2022.108160
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Yan Tu;Hongwei Shi;Xiaoyang Zhou;Benjamin Lev
  • 通讯作者:
    Benjamin Lev

Benjamin Lev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Lev', 18)}}的其他基金

Exploring Excited-State 1D Dipolar Quantum Matter with Dysprosium Gases
用镝气体探索激发态一维偶极量子物质
  • 批准号:
    2006149
  • 财政年份:
    2020
  • 资助金额:
    $ 75.5万
  • 项目类别:
    Continuing Grant
One-Dimensional Gases of Dysprosium
一维镝气体
  • 批准号:
    1707336
  • 财政年份:
    2017
  • 资助金额:
    $ 75.5万
  • 项目类别:
    Standard Grant
E2CDA: Type I: Collaborative Research: Energy Efficient Computing with Chip-Based Photonics
E2CDA:类型 I:协作研究:基于芯片的光子学的节能计算
  • 批准号:
    1640075
  • 财政年份:
    2016
  • 资助金额:
    $ 75.5万
  • 项目类别:
    Continuing Grant
Synthetic Gauge Fields in Quantum Gases of Dysprosium
镝量子气体中的合成规范场
  • 批准号:
    1403396
  • 财政年份:
    2014
  • 资助金额:
    $ 75.5万
  • 项目类别:
    Continuing Grant
CAREER: Exploring exotic matter through the quantum manipulation of dipolar atoms
职业:通过偶极原子的量子操纵探索奇异物质
  • 批准号:
    1262062
  • 财政年份:
    2011
  • 资助金额:
    $ 75.5万
  • 项目类别:
    Continuing Grant
CAREER: Exploring exotic matter through the quantum manipulation of dipolar atoms
职业:通过偶极原子的量子操纵探索奇异物质
  • 批准号:
    0847469
  • 财政年份:
    2009
  • 资助金额:
    $ 75.5万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Orbital-based Descriptors for Dynamical Properties of Quantum Defects
职业:基于轨道的量子缺陷动力学特性描述符
  • 批准号:
    2340733
  • 财政年份:
    2024
  • 资助金额:
    $ 75.5万
  • 项目类别:
    Continuing Grant
ERI: Development of light-emitting devices having intensive quantum-optical properties using a low-dimensional semiconducting material
ERI:使用低维半导体材料开发具有强量子光学特性的发光器件
  • 批准号:
    2301580
  • 财政年份:
    2023
  • 资助金额:
    $ 75.5万
  • 项目类别:
    Standard Grant
Chemical synthesis and exploration of concerted optical properties of anisotropic three-dimensional quantum dot superlattices
各向异性三维量子点超晶格的化学合成及协同光学性质探索
  • 批准号:
    23H01802
  • 财政年份:
    2023
  • 资助金额:
    $ 75.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantum thermodynamical framework for understanding off-equilibrium properties of living systems
用于理解生命系统非平衡特性的量子热力学框架
  • 批准号:
    2896340
  • 财政年份:
    2023
  • 资助金额:
    $ 75.5万
  • 项目类别:
    Studentship
Elucidation of the origin of Anomalous Microwave Emission: Pioneering the theory on quantum properties of interstellar amorphous dust
阐明异常微波发射的起源:开创星际非晶尘埃量子特性理论
  • 批准号:
    22KJ0727
  • 财政年份:
    2023
  • 资助金额:
    $ 75.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Combining quantum multicomponent molecular theory and data science to understand the mechanism of physical properties in low-barrier hydrogen-bonded systems
结合量子多组分分子理论和数据科学来理解低势垒氢键系统的物理性质机制
  • 批准号:
    23K17905
  • 财政年份:
    2023
  • 资助金额:
    $ 75.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
CDS&E: Excited-state properties and the impact of random defects in quantum materials
CDS
  • 批准号:
    2202101
  • 财政年份:
    2022
  • 资助金额:
    $ 75.5万
  • 项目类别:
    Standard Grant
Quantum Low Dimensional Materials and their Topological and Collective Properties
量子低维材料及其拓扑和集体性质
  • 批准号:
    RGPIN-2021-04079
  • 财政年份:
    2022
  • 资助金额:
    $ 75.5万
  • 项目类别:
    Discovery Grants Program - Individual
Probing 2D material properties using ultrafast Quantum Interference Control
使用超快量子干涉控制探测 2D 材料特性
  • 批准号:
    559996-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 75.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Development of a numerical model to predict the quantum dot properties of flame-made carbon nanoparticles
开发数值模型来预测火焰制造的碳纳米粒子的量子点特性
  • 批准号:
    558007-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 75.5万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了