Collaborative Research: CNS Core: Medium: Systems Support for Federated Learning
协作研究:CNS 核心:中:联邦学习的系统支持
基本信息
- 批准号:2106184
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Traditional approaches toward applying machine learning techniques to end-user data often require copying all data to the cloud. This is not only expensive but faces data privacy risks as well. By analyzing data on the device where it is generated, federated learning aims to mitigate both cost and privacy concerns of centralized machine learning without sacrificing its benefits. This collaborative project brings together investigators from two institutions to develop building blocks for practical federated learning by addressing challenges arising from the diversity of user devices and the heterogeneity of data distributions in those devices. The project takes a three-pronged approach: (1) enable performance improvements for machine learning developers (e.g., judicious participant selection instead of randomly selecting participants); (2) provide efficiency improvements for service providers (e.g., redundancy elimination for data transfers); (3) enable end-users to control their data privacy (e.g., akin to app permissions in Android) without sacrificing device usability. Two core principles underpin these solutions: multi-tenancy both in the cloud and on individual devices; and maintaining theoretical correctness, convergence characteristics, and privacy/security guarantees of federated learning algorithms. Widespread adoption of practical federated learning can fundamentally change how we gather insights from end-user data and how users value data privacy, because users may not have to sacrifice privacy for convenience in many cases. This, in turn, can force large corporations to rethink their data collection and usage practices, and influence policy makers to consider stricter privacy regulations. All software from this project will be open source. Through outreach and new educational materials, this project will pioneer the training of privacy-aware systems builders.This collaborative project will produce software artifacts, experimental harnesses, benchmarks, and results of running those benchmarks and artifacts. These materials will be available for public use under permissive open-source licenses at multiple locations, including https://github.com/symbioticlab. They will be retained for at least three years after the completion of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将机器学习技术应用于最终用户数据的传统方法通常需要将所有数据复制到云中。这不仅昂贵,而且还面临数据隐私风险。通过分析生成数据的设备上的数据,联邦学习旨在减轻集中式机器学习的成本和隐私问题,而不会牺牲其优势。这个合作项目汇集了来自两个机构的研究人员,通过解决用户设备的多样性和这些设备中数据分布的异质性所带来的挑战,为实际的联邦学习开发构建模块。该项目采取三管齐下的方法:(1)为机器学习开发人员提供性能改进(例如,明智的参与者选择而不是随机选择参与者);(2)为服务提供商提供效率改进(例如,数据传输的冗余消除);(3)使终端用户能够控制他们的数据隐私(例如,类似于Android中的应用程序权限),而不会牺牲设备的可用性。两个核心原则支撑着这些解决方案:在云中和单个设备上的多租户;以及保持理论正确性,收敛特性和联邦学习算法的隐私/安全保证。广泛采用实用的联邦学习可以从根本上改变我们从最终用户数据中收集见解的方式以及用户如何重视数据隐私,因为在许多情况下,用户可能不必为了方便而牺牲隐私。这反过来又会迫使大公司重新考虑其数据收集和使用做法,并影响政策制定者考虑更严格的隐私法规。该项目的所有软件都将是开源的。通过推广和新的教育材料,该项目将率先培训隐私感知系统的构建者。这个合作项目将产生软件工件,实验工具,基准测试以及运行这些基准测试和工件的结果。这些材料将在多个地点(包括https://github.com/symbioticlab)的许可开源许可下供公众使用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ModelKeeper: Accelerating DNN Training via Automated Training Warmup
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:15
- 作者:Fan Lai;Yinwei Dai;H. Madhyastha;Mosharaf Chowdhury
- 通讯作者:Fan Lai;Yinwei Dai;H. Madhyastha;Mosharaf Chowdhury
AdaEmbed: Adaptive Embedding for Large-Scale Recommendation Models
AdaEmbed:大规模推荐模型的自适应嵌入
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lai, Fan;Zhang, Wei;Liu, Rui;Tsai, William;Wei, Xiaohan;Hu, Yuxi;Devkota, Sabin;Huang, Jianyu;Park, Jongsoo;Liu, Xing
- 通讯作者:Liu, Xing
Oobleck: Resilient Distributed Training of Large Models Using Pipeline Templates
- DOI:10.1145/3600006.3613152
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Insu Jang;Zhenning Yang;Zhen Zhang;Xin Jin;Mosharaf Chowdhury
- 通讯作者:Insu Jang;Zhenning Yang;Zhen Zhang;Xin Jin;Mosharaf Chowdhury
FedScale: Benchmarking Model and System Performance of Federated Learning at Scale
- DOI:
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Fan Lai;Yinwei Dai;Sanjay Sri Vallabh Singapuram;Jiachen Liu;Xiangfeng Zhu;H. Madhyastha;Mosharaf Chowdhury
- 通讯作者:Fan Lai;Yinwei Dai;Sanjay Sri Vallabh Singapuram;Jiachen Liu;Xiangfeng Zhu;H. Madhyastha;Mosharaf Chowdhury
Egeria: Efficient DNN Training with Knowledge-Guided Layer Freezing
- DOI:10.1145/3552326.3587451
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Yiding Wang;D. Sun;Kai Chen-;Fan Lai;Mosharaf Chowdhury
- 通讯作者:Yiding Wang;D. Sun;Kai Chen-;Fan Lai;Mosharaf Chowdhury
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mosharaf Chowdhury其他文献
CDI-E: An Elastic Cloud Service for Data Engineering
CDI-E:数据工程的弹性云服务
- DOI:
10.14778/3554821.3554825 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Prakash Das;Shivangi Srivastava;Valentin Moskovich;Anmol Chaturvedi;Anant Mittal;Yongqin Xiao;Mosharaf Chowdhury - 通讯作者:
Mosharaf Chowdhury
Fair Allocation of Heterogeneous and InterchangeableResources
异构和可互换资源的公平分配
- DOI:
10.1145/3305218.3305227 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Xiao Sun;T. Le;Mosharaf Chowdhury;Zhenhua Liu - 通讯作者:
Zhenhua Liu
Pyxis: Scheduling Mixed Tasks in Disaggregated Datacenters
Pyxis:在分类数据中心调度混合任务
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.3
- 作者:
Sheng Qi;Chao Jin;Mosharaf Chowdhury;Zhenming Liu;Xuanzhe Liu;Xin Jin - 通讯作者:
Xin Jin
Coflow: A Networking Abstraction for Distributed Data-Parallel Applications
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Mosharaf Chowdhury - 通讯作者:
Mosharaf Chowdhury
Resource Management in Multi-* Clusters : Cloud Provisioning
多*集群中的资源管理:云配置
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Mosharaf Chowdhury - 通讯作者:
Mosharaf Chowdhury
Mosharaf Chowdhury的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mosharaf Chowdhury', 18)}}的其他基金
Collaborative Research: Conference: NSF NeTS PI Meeting - Spring 2023
协作研究:会议:NSF NeTS PI 会议 - 2023 年春季
- 批准号:
2309858 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: NGSDI: Foundations of Clean and Balanced Datacenters: Treehouse
合作研究:NGSDI:清洁和平衡数据中心的基础:Treehouse
- 批准号:
2104243 - 财政年份:2021
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
CNS Core: Medium: Collaborative Research: Towards Enabling Optimal Performance-Cost Tradeoffs in Distributed Storage
CNS 核心:中:协作研究:实现分布式存储中的最佳性能与成本权衡
- 批准号:
1900665 - 财政年份:2019
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
CAREER: End-to-End Network Design for Unified Memory Disaggregation
职业:统一内存分解的端到端网络设计
- 批准号:
1845853 - 财政年份:2019
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
CNS Core: Small: Multi-Scale GPU Resource Management for AI Applications
CNS 核心:小型:AI 应用的多规模 GPU 资源管理
- 批准号:
1909067 - 财政年份:2019
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
NeTS: CSR: Medium: Collaborative Research: Enabling Flexible and High Performance Big Data Analytics Over Geo-Distributed Clouds
NeTS:CSR:中:协作研究:通过地理分布式云实现灵活且高性能的大数据分析
- 批准号:
1563095 - 财政年份:2016
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
XPS: FULL: A Cross-Layer Approach Toward Low-Latency Data-Parallel Applications in Rack-Scale Computing
XPS:FULL:机架规模计算中低延迟数据并行应用的跨层方法
- 批准号:
1629397 - 财政年份:2016
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Enabling Application-Level Performance Predictability in Public Clouds
NeTS:小型:协作研究:在公共云中实现应用程序级性能可预测性
- 批准号:
1617773 - 财政年份:2016
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant