XPS: FULL: A Cross-Layer Approach Toward Low-Latency Data-Parallel Applications in Rack-Scale Computing

XPS:FULL:机架规模计算中低延迟数据并行应用的跨层方法

基本信息

项目摘要

Although many modern applications, e.g., exploratory analytics and scientific visualization, come with stringent latency requirements, today's in-memory and scale-out solutions often provide only best-effort services. A root cause of unpredictability lies in the traditional design principle of minimizing I/O operations. With the advent of faster storage and networks in rack-scale computing, however, I/O may no longer be scarce anymore. This project revisits the tradeoffs and design principles of scale-out, low-latency applications in this emerging context. Bounded response times will reduce over-provisioning and foster new applications (e.g., business intelligence, robotics, and intensive care units) that require consistent performance. Project findings will be integrated into undergraduate and graduate curricula, and software artifacts will be open-sourced for the wider community across academia and industry. This project aims to leverage the influx of new hardware capabilities to enable applications based on bounded response times as their primary design criteria. Specifically, the project leverages approximation, speculation, and scheduling to mask variabilities in latency-sensitive applications. The key technical challenge in realizing this vision lie in making a set of tradeoffs different from the norm: (i) rather than striving for less I/O, this project trades I/O off for better memory locality and aggressively speculate to reduce response times; (ii) when needed, it resorts to approximation techniques for bounded response times; and finally, (iii) it develops new approximation- and speculation-aware schedulers to increase resource efficiency. The project also investigates theoretical and empirical boundaries of approximate and speculative processing as well as new spatiotemporal scheduling techniques in rack-scale computing.
尽管许多现代应用,例如,探索性分析和科学可视化具有严格的延迟要求,但如今的内存和横向扩展解决方案通常只提供尽力而为的服务。不可预测性的根本原因在于最小化I/O操作的传统设计原则。然而,随着机架级计算中更快的存储和网络的出现,I/O可能不再稀缺。这个项目重新审视了在这种新兴环境中横向扩展、低延迟应用程序的权衡和设计原则。有限的响应时间将减少过度配置并促进新的应用程序(例如,商业智能、机器人技术和重症监护病房)。项目研究结果将被整合到本科和研究生课程中,软件工件将面向学术界和工业界更广泛的社区开放。 该项目旨在利用新硬件功能的涌入,使应用程序基于有限的响应时间作为其主要设计标准。具体来说,该项目利用近似、推测和调度来屏蔽延迟敏感应用程序中的可变性。实现这一愿景的关键技术挑战在于做出一系列不同于常规的权衡:(i)该项目不是努力减少I/O,而是将I/O交换为更好的内存局部性,并积极推测以减少响应时间;(ii)在需要时,它采用近似技术来限制响应时间;最后,(iii)开发新的近似和推测感知的编码器以提高资源效率。该项目还研究了近似和推测处理的理论和经验边界,以及机架规模计算中的新时空调度技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mosharaf Chowdhury其他文献

CDI-E: An Elastic Cloud Service for Data Engineering
CDI-E:数据工程的弹性云服务
  • DOI:
    10.14778/3554821.3554825
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prakash Das;Shivangi Srivastava;Valentin Moskovich;Anmol Chaturvedi;Anant Mittal;Yongqin Xiao;Mosharaf Chowdhury
  • 通讯作者:
    Mosharaf Chowdhury
Fair Allocation of Heterogeneous and InterchangeableResources
异构和可互换资源的公平分配
  • DOI:
    10.1145/3305218.3305227
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiao Sun;T. Le;Mosharaf Chowdhury;Zhenhua Liu
  • 通讯作者:
    Zhenhua Liu
Pyxis: Scheduling Mixed Tasks in Disaggregated Datacenters
Pyxis:在分类数据中心调度混合任务
Coflow: A Networking Abstraction for Distributed Data-Parallel Applications
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mosharaf Chowdhury
  • 通讯作者:
    Mosharaf Chowdhury
Resource Management in Multi-* Clusters : Cloud Provisioning
多*集群中的资源管理:云配置
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mosharaf Chowdhury
  • 通讯作者:
    Mosharaf Chowdhury

Mosharaf Chowdhury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mosharaf Chowdhury', 18)}}的其他基金

Collaborative Research: Conference: NSF NeTS PI Meeting - Spring 2023
协作研究:会议:NSF NeTS PI 会议 - 2023 年春季
  • 批准号:
    2309858
  • 财政年份:
    2023
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NGSDI: Foundations of Clean and Balanced Datacenters: Treehouse
合作研究:NGSDI:清洁和平衡数据中心的基础:Treehouse
  • 批准号:
    2104243
  • 财政年份:
    2021
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Systems Support for Federated Learning
协作研究:CNS 核心:中:联邦学习的系统支持
  • 批准号:
    2106184
  • 财政年份:
    2021
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
CNS Core: Medium: Collaborative Research: Towards Enabling Optimal Performance-Cost Tradeoffs in Distributed Storage
CNS 核心:中:协作研究:实现分布式存储中的最佳性能与成本权衡
  • 批准号:
    1900665
  • 财政年份:
    2019
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
CAREER: End-to-End Network Design for Unified Memory Disaggregation
职业:统一内存分解的端到端网络设计
  • 批准号:
    1845853
  • 财政年份:
    2019
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
CNS Core: Small: Multi-Scale GPU Resource Management for AI Applications
CNS 核心:小型:AI 应用的多规模 GPU 资源管理
  • 批准号:
    1909067
  • 财政年份:
    2019
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
NeTS: CSR: Medium: Collaborative Research: Enabling Flexible and High Performance Big Data Analytics Over Geo-Distributed Clouds
NeTS:CSR:中:协作研究:通过地理分布式云实现灵活且高性能的大数据分析
  • 批准号:
    1563095
  • 财政年份:
    2016
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
NeTS: Small: Collaborative Research: Enabling Application-Level Performance Predictability in Public Clouds
NeTS:小型:协作研究:在公共云中实现应用程序级性能可预测性
  • 批准号:
    1617773
  • 财政年份:
    2016
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant

相似国自然基金

钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
  • 批准号:
    51871067
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Human-Robot Co-Evolution: Achieving the full potential of future workplaces
人机协同进化:充分发挥未来工作场所的潜力
  • 批准号:
    DP240100938
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Discovery Projects
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
  • 批准号:
    EP/Y035976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Research Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
CAREER: Informed Testing — From Full-Field Characterization of Mechanically Graded Soft Materials to Student Equity in the Classroom
职业:知情测试 – 从机械分级软材料的全场表征到课堂上的学生公平
  • 批准号:
    2338371
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
CAREER: From Flamelet to Full-Scale: Advancing Plasma-Assisted Combustion for Low-Emission Sustainable Fuels
职业生涯:从小火焰到全面:推进低排放可持续燃料的等离子体辅助燃烧
  • 批准号:
    2339518
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
STTR Phase II: Dermatologist-level detection of suspicious pigmented skin lesions from high-resolution full-body images
STTR II 期:通过高分辨率全身图像对可疑色素性皮肤病变进行皮肤科医生级别的检测
  • 批准号:
    2335086
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Cooperative Agreement
Toward carbon-neutral society: Development of a full-sustainable eco-friendly green mining process for gold recovery
迈向碳中和社会:开发完全可持续的环保绿色采矿工艺以回收黄金
  • 批准号:
    24K17540
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
All Analogue Full-duplex Dual-receiver Radio for Wideband Mm-wave Communications
用于宽带毫米波通信的全模拟全双工双接收器无线电
  • 批准号:
    EP/X041581/1
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Research Grant
Full mitigation of birefringence for high-precision optical experiments
完全缓解双折射,实现高精度光学实验
  • 批准号:
    24K00649
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了