Collaborative Research: CIF: Medium: Emerging Directions in Robust Learning and Inference
协作研究:CIF:媒介:稳健学习和推理的新兴方向
基本信息
- 批准号:2106339
- 负责人:
- 金额:$ 36.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Future applications of national importance, such as healthcare, critical infrastructure, transportation systems, and smart cities, are expected to increasingly rely on machine-learning methods, including structured learning, supervised learning, and reinforcement learning. In many of these applications, the probabilistic distribution governing the data may undergo variations with time and location, and data could be corrupted by faulty or malicious agents/sensors. Such model deviation and data corruption could result in significant performance degradation. The goal in this project is to explore new ways to design learning and inference methods that are robust to distributional uncertainty and data corruption. This project is bridging and further advancing research in areas of statistical learning, optimization, control theory, network science, reinforcement learning, statistical signal processing and information theory. The methods developed are likely to have significant impact on a wide range of applications in areas of societal importance such as healthcare, transportation systems, smart grids, and smart cities. The investigators are co-organizing special sessions at conferences, workshops and symposia on robust learning and inference to disseminate the research outcomes of this project, formalize far-reaching research directions, identify new challenges in this emerging area, stimulate the development of original research ideas, and foster interdisciplinary collaborations. The investigators are committed to broadening participation of under-represented minorities and women both among the graduate and undergraduate students in computing and engineering. The investigators are enriching their current courses and further developing new courses on topics related to this project.This project is expected to make new contributions to the theory and practice of robust learning and inference. Several emerging directions are being investigated, including robust sketch-based learning, robust mean estimation, synthesis of confusing inputs to machine-learning models, robustness to distributional uncertainty at inference time, and robust model-free reinforcement learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
未来具有国家重要性的应用,如医疗保健、关键基础设施、交通系统和智慧城市,预计将越来越依赖机器学习方法,包括结构化学习、监督学习和强化学习。在许多这些应用中,管理数据的概率分布可能会随着时间和位置而变化,并且数据可能会被错误或恶意代理/传感器损坏。这种模型偏差和数据损坏可能导致显著的性能下降。该项目的目标是探索新的方法来设计学习和推理方法,这些方法对分布不确定性和数据损坏具有鲁棒性。该项目是连接和进一步推进统计学习,优化,控制理论,网络科学,强化学习,统计信号处理和信息理论领域的研究。开发的方法可能会对医疗保健,交通系统,智能电网和智能城市等社会重要性领域的广泛应用产生重大影响。研究人员正在会议,研讨会和研讨会上共同组织关于强大学习和推理的特别会议,以传播该项目的研究成果,正式确定影响深远的研究方向,确定这一新兴领域的新挑战,刺激原创研究思想的发展,并促进跨学科合作。调查人员致力于扩大代表性不足的少数民族和妇女在计算和工程专业的研究生和本科生中的参与。研究人员正在丰富他们现有的课程,并进一步开发与该项目相关的新课程。该项目有望为鲁棒学习和推理的理论和实践做出新的贡献。正在研究的几个新兴方向包括鲁棒的基于草图的学习、鲁棒的均值估计、机器学习模型的混淆输入合成、推理时对分布不确定性的鲁棒性以及鲁棒的无模型强化学习。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Discriminative Approach To Unsupervised Domain Adaptation in Coarse-To-Fine Classifiers
- DOI:10.1109/mlsp55844.2023.10285908
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Ismail R. Alkhouri;Akram S. Awad;Connor Hatfield;George Atia
- 通讯作者:Ismail R. Alkhouri;Akram S. Awad;Connor Hatfield;George Atia
A Differentiable Approach to the Maximum Independent Set Problem Using Graph-Based Neural Network Structures
- DOI:10.1109/mlsp55214.2022.9943476
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Ismail R. Alkhouri;George K. Atia;Alvaro Velasquez
- 通讯作者:Ismail R. Alkhouri;George K. Atia;Alvaro Velasquez
Robust Average-Reward Markov Decision Processes
鲁棒平均奖励马尔可夫决策过程
- DOI:10.1609/aaai.v37i12.26775
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wang, Yue;Velasquez, Alvaro;Atia, George;Prater-Bennette, Ashley;Zou, Shaofeng
- 通讯作者:Zou, Shaofeng
Sketches by MoSSaRT: Representative selection from manifolds with gross sparse corruptions
- DOI:10.1016/j.patcog.2021.108454
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:M. Sedghi;M. Georgiopoulos;George K. Atia
- 通讯作者:M. Sedghi;M. Georgiopoulos;George K. Atia
On the Coarse Robustness of Classifiers
- DOI:10.1109/ieeeconf56349.2022.10051990
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Ismail R. Alkhouri;Stanley Bak;Alvaro Velasquez;George K. Atia
- 通讯作者:Ismail R. Alkhouri;Stanley Bak;Alvaro Velasquez;George K. Atia
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Atia其他文献
Benchmarking the Robustness of Protein Folding Neural Networks: A COVID-19 Case Study Using AlphaFold
对蛋白质折叠神经网络的鲁棒性进行基准测试:使用 AlphaFold 的 COVID-19 案例研究
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ismail R. Alkhouri;S. Jha;Andre Beckus;Alvaro Velasquez;George Atia;A. Ramanathan;Rickard Ewetz;Susmit Jha - 通讯作者:
Susmit Jha
Bayesian Inverse Reinforcement Learning for Non-Markovian Rewards
非马尔可夫奖励的贝叶斯逆强化学习
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Noah Topper;Alvaro Velasquez;George Atia - 通讯作者:
George Atia
Controller synthesis for linear temporal logic and steady-state specifications
线性时序逻辑和稳态规范的控制器综合
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Alvaro Velasquez;Ismail R. Alkhouri;Andre Beckus;Ashutosh Trivedi;George Atia - 通讯作者:
George Atia
George Atia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Atia', 18)}}的其他基金
CAREER: Inference-Driven Data Processing and Acquisition: Scalability, Robustness and Control
职业:推理驱动的数据处理和采集:可扩展性、鲁棒性和控制
- 批准号:
1552497 - 财政年份:2016
- 资助金额:
$ 36.58万 - 项目类别:
Continuing Grant
CIF: Small: Advanced Ion Channel Models for Neurological Signal Processing -- Theory and Application to Brain-Computer Interfacing
CIF:小型:神经信号处理的高级离子通道模型——脑机接口的理论与应用
- 批准号:
1525990 - 财政年份:2015
- 资助金额:
$ 36.58万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: A Unifying Approach for Identification of Sparse Interactions in Large Datasets
CIF:小型:协作研究:识别大型数据集中稀疏交互的统一方法
- 批准号:
1320547 - 财政年份:2013
- 资助金额:
$ 36.58万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 36.58万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 36.58万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 36.58万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 36.58万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 36.58万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402816 - 财政年份:2024
- 资助金额:
$ 36.58万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 36.58万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403123 - 财政年份:2024
- 资助金额:
$ 36.58万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326621 - 财政年份:2024
- 资助金额:
$ 36.58万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 36.58万 - 项目类别:
Standard Grant