Collaborative Research: CNS Core: Medium: Dynamic Data-driven Systems - Theory and Applications
合作研究:CNS 核心:媒介:动态数据驱动系统 - 理论与应用
基本信息
- 批准号:2106403
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern computer systems must be continually optimized in a data-driven manner to maintain performance, even as their deployment and workload environments change. This holds for traditional systems like content delivery networks and emerging architectures such as edge/cloud systems. The design of dynamic data-driven systems requires both theoretical advancements and new systems architectures. A key challenge is a tradeoff between optimality, i.e., choosing an optimal deployment for the current environment in terms of performance and/or cost, and smoothness, i.e., ensuring that the deployment changes are not too costly at any point. This project seeks to develop tools at the intersection of machine learning and optimization that enable systems to balance between optimality and smoothness. Further, this project deploys and empirically evaluates these tools in the context of 360 video streaming as a representative case study. Smoothness is not a traditional system performance measure, and so it is typically enforced only in ad hoc ways by existing systems. However, it is a crucial consideration for systems that seek to continuously optimize their configuration since the switching costs associated with changing configurations can be significant. Managing the tradeoff between optimality and smoothness in a rigorous fashion can lead to dramatic improvements; however, it is challenging since it requires a robust data-driven design that can determine whether it is worth incurring a switching cost in the present, without knowledge of the future environment. This project develops analytic tools that enable the design of algorithms for dynamic systems that balance optimality and smoothness through the integration of data-driven and optimization approaches. There are also planned test-bed deployment activities for 360 video streaming. The project will provide new foundational tools for the design of dynamic systems across multiple application areas. While we choose video streaming as our target application, the proposed fundamental research is applicable much more broadly. Notably, this project broadens the participation of underrepresented groups in STEM areas through programs at both K-12 and undergraduate levels. Planned activities include developing accelerated mathematics programs for middle-school students, summer programs for middle-school and high-school students, and summer research programs for undergraduate students. This is a collaborative project with investigators from the University of Massachusetts Amherst, California Institute of Technology, and the State University of New York at Stony Brook. The results of this project will be maintained on the project website at https://groups.cs.umass.edu/hajiesmaili/soco/. These will include technical reports of the research findings, software prototypes of the algorithms designed, datasets, and experimental results collected for the 360 video streaming experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代计算机系统必须以数据驱动的方式不断优化,以保持性能,即使其部署和工作负载环境发生变化。这适用于内容交付网络等传统系统和边缘/云系统等新兴架构。动态数据驱动系统的设计需要理论上的进步和新的系统架构。一个关键的挑战是最优性之间的权衡,即,在性能和/或成本以及平滑性方面为当前环境选择最佳部署,即,确保部署变化在任何时候都不会花费太多。该项目旨在开发机器学习和优化交叉点的工具,使系统能够在最优性和平滑性之间取得平衡。此外,该项目部署和经验评估这些工具的背景下,360视频流作为一个代表性的案例研究。平滑度不是传统的系统性能度量,因此它通常仅由现有系统以特定方式强制执行。然而,对于寻求持续优化其配置的系统来说,这是一个至关重要的考虑因素,因为与改变配置相关联的切换成本可能很大。以严格的方式管理最优性和平滑性之间的权衡可以带来巨大的改进;然而,这是具有挑战性的,因为它需要一个强大的数据驱动设计,可以确定是否值得在当前产生切换成本,而不知道未来的环境。该项目开发分析工具,使动态系统的算法设计,通过数据驱动和优化方法的集成平衡最优性和平滑性。此外,还计划为360视频流进行测试台部署活动。该项目将为跨多个应用领域的动态系统设计提供新的基础工具。虽然我们选择视频流作为我们的目标应用,但所提出的基础研究适用范围更广。值得注意的是,该项目通过K-12和本科水平的课程扩大了STEM领域代表性不足的群体的参与。计划的活动包括为中学生开发加速数学课程,为初中和高中学生开发暑期课程,为本科生开发暑期研究课程。这是一个与来自马萨诸塞州阿默斯特大学、加州理工学院和斯托尼布鲁克的纽约州立大学的研究人员合作的项目。该项目的结果将在项目网站https://groups.cs.umass.edu/hajiesmaili/soco/上公布。其中包括研究成果的技术报告、设计算法的软件原型、数据集以及为360视频流实验收集的实验结果。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Online Pause and Resume Problem: Optimal Algorithms and An Application to Carbon-Aware Load Shifting
在线暂停和恢复问题:最优算法和碳感知负载转移的应用
- DOI:10.1145/3626776
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lechowicz, Adam;Christianson, Nicolas;Zuo, Jinhang;Bashir, Noman;Hajiesmaili, Mohammad;Wierman, Adam;Shenoy, Prashant
- 通讯作者:Shenoy, Prashant
Decentralized Online Convex Optimization in Networked Systems
- DOI:
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Yiheng Lin;Judy Gan;Guannan Qu;Yashodhan Kanoria;A. Wierman
- 通讯作者:Yiheng Lin;Judy Gan;Guannan Qu;Yashodhan Kanoria;A. Wierman
The Online Knapsack Problem with Departures
出发时的在线背包问题
- DOI:10.1145/3570618
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Sun, Bo;Yang, Lin;Hajiesmaili, Mohammad;Wierman, Adam;Lui, John C.;Towsley, Don;Tsang, Danny H.K.
- 通讯作者:Tsang, Danny H.K.
Smoothed Online Optimization with Unreliable Predictions
- DOI:10.1145/3579442
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Daan Rutten;Nicolas H. Christianson;Debankur Mukherjee;A. Wierman
- 通讯作者:Daan Rutten;Nicolas H. Christianson;Debankur Mukherjee;A. Wierman
Scalable Reinforcement Learning for Multiagent Networked Systems
- DOI:10.1287/opre.2021.2226
- 发表时间:2019-12
- 期刊:
- 影响因子:0
- 作者:Guannan Qu;A. Wierman;N. Li
- 通讯作者:Guannan Qu;A. Wierman;N. Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Wierman其他文献
Best of Both Worlds: Stochastic and Adversarial Convex Function Chasing
两全其美:随机和对抗性凸函数追逐
- DOI:
10.48550/arxiv.2311.00181 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Neelkamal Bhuyan;Debankur Mukherjee;Adam Wierman - 通讯作者:
Adam Wierman
Characterizing the impact of the workload on the value of dynamic resizing in data centers
描述工作负载对数据中心动态调整大小的价值的影响
- DOI:
10.1145/2254756.2254815 - 发表时间:
2012-06 - 期刊:
- 影响因子:2.2
- 作者:
Minghong Lin;Florin Ciucu;Adam Wierman;Chuang Lin - 通讯作者:
Chuang Lin
A view of the sustainable computing landscape
- DOI:
10.1016/j.patter.2025.101296 - 发表时间:
2025-07-11 - 期刊:
- 影响因子:7.400
- 作者:
Benjamin C. Lee;David Brooks;Arthur van Benthem;Mariam Elgamal;Udit Gupta;Gage Hills;Vincent Liu;Linh Thi Xuan Phan;Benjamin Pierce;Christopher Stewart;Emma Strubell;Gu-Yeon Wei;Adam Wierman;Yuan Yao;Minlan Yu - 通讯作者:
Minlan Yu
Pricing Uncertainty in Stochastic Multi-Stage Electricity Markets
随机多阶段电力市场的定价不确定性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Lucien Werner;Nicolas H. Christianson;Alessandro Zocca;Adam Wierman;Steven H. Low - 通讯作者:
Steven H. Low
Distributionally Robust Constrained Reinforcement Learning under Strong Duality
强对偶下的分布鲁棒约束强化学习
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zhengfei Zhang;Kishan Panaganti;Laixi Shi;Yanan Sui;Adam Wierman;Yisong Yue - 通讯作者:
Yisong Yue
Adam Wierman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Wierman', 18)}}的其他基金
Collaborative Research: CNS Core: Small: Optimizing Large-Scale Heterogeneous ML Platforms
合作研究:CNS Core:小型:优化大规模异构机器学习平台
- 批准号:
2146814 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: NGSDI: CarbonFirst: A Sustainable and Reliable Carbon-Centric Cloud-Edge Software Infrastructure
合作研究:NGSDI:CarbonFirst:可持续且可靠的以碳为中心的云边缘软件基础设施
- 批准号:
2105648 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: CPS: Medium: Enabling DER Integration via Redesign of Information Flows
协作研究:CPS:中:通过重新设计信息流实现 DER 集成
- 批准号:
2136197 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
NeTS: Large: Networked Markets: Theory and Applications
NeTS:大型:网络市场:理论与应用
- 批准号:
1518941 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Beyond Stability: Performance, Efficiency and Disturbance Management for Smart Infrastructure Systems
CPS:协同:协作研究:超越稳定性:智能基础设施系统的性能、效率和干扰管理
- 批准号:
1545096 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CSR: Small:Collaborative Research: Data Center Demand Response: Coordinating the Cloud and the Smart Grid
CSR:小型:协作研究:数据中心需求响应:协调云和智能电网
- 批准号:
1319820 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: A Unified Approach to Quantifying Market Power in the Future Grid
协作研究:量化未来电网市场力量的统一方法
- 批准号:
1307794 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
ICES: Small: A Revealed Preference Approach to Computational Complexity in Economics
ICES:小:经济学中计算复杂性的显示偏好方法
- 批准号:
1101470 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Towards a rigorous foundation for scheduling in modern systems
职业生涯:为现代系统中的调度奠定严格的基础
- 批准号:
0846025 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant