Collaborative Research: CIF: Medium: Emerging Directions in Robust Learning and Inference
协作研究:CIF:媒介:稳健学习和推理的新兴方向
基本信息
- 批准号:2106560
- 负责人:
- 金额:$ 37.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Future applications of national importance, such as healthcare, critical infrastructure, transportation systems, and smart cities, are expected to increasingly rely on machine-learning methods, including structured learning, supervised learning, and reinforcement learning. In many of these applications, the probabilistic distribution governing the data may undergo variations with time and location, and data could be corrupted by faulty or malicious agents/sensors. Such model deviation and data corruption could result in significant performance degradation. The goal in this project is to explore new ways to design learning and inference methods that are robust to distributional uncertainty and data corruption. This project is bridging and further advancing research in areas of statistical learning, optimization, control theory, network science, reinforcement learning, statistical signal processing and information theory. The methods developed are likely to have significant impact on a wide range of applications in areas of societal importance such as healthcare, transportation systems, smart grids, and smart cities. The investigators are co-organizing special sessions at conferences, workshops and symposia on robust learning and inference to disseminate the research outcomes of this project, formalize far-reaching research directions, identify new challenges in this emerging area, stimulate the development of original research ideas, and foster interdisciplinary collaborations. The investigators are committed to broadening participation of under-represented minorities and women both among the graduate and undergraduate students in computing and engineering. The investigators are enriching their current courses and further developing new courses on topics related to this project.This project is expected to make new contributions to the theory and practice of robust learning and inference. Several emerging directions are being investigated, including robust sketch-based learning, robust mean estimation, synthesis of confusing inputs to machine-learning models, robustness to distributional uncertainty at inference time, and robust model-free reinforcement learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
预计未来国家重要性的应用,例如医疗保健,关键基础设施,运输系统和智能城市,将越来越多地依赖机器学习方法,包括结构化学习,监督学习和加强学习。在许多这些应用程序中,控制数据的概率分布可能会随时间和位置的变化而发生变化,并且数据可能会因错误或恶意代理/传感器而损坏。这种模型偏差和数据损坏可能会导致大量的性能下降。该项目的目标是探索设计学习和推理方法的新方法,这些方法对分配不确定性和数据损坏是可靠的。该项目正在桥接,并进一步推进统计学习,优化,控制理论,网络科学,强化学习,统计信号处理和信息理论领域的研究。开发的方法可能会对社会重要性领域(例如医疗保健,运输系统,智能网格和智能城市)的广泛应用产生重大影响。研究人员正在共同组织会议,讲习班和研讨会,以进行强大的学习和推理,以传播该项目的研究成果,正式化了深远的研究方向,确定了这个散发性领域的新挑战,刺激了原始研究思想的发展,并促进了学科跨学科的协作。调查人员致力于扩大代表性不足的少数民族和妇女的参与,包括研究生和本科生在计算和工程领域的参与。调查人员正在丰富目前的课程,并进一步开发有关该项目有关的主题的新课程。该项目有望为强有力的学习和推理做出新的贡献。正在研究几个新兴方向,包括基于强大的素描学习,稳健的平均值估计,对机器学习模型的混淆的综合,对推理时间的鲁棒性对分配不确定性的鲁棒性以及坚固的模型强化学习。这项奖项反映了NSF的法定任务,并通过评估智能委员会进行了评估和广泛的影响。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-Driven Robust Multi-Agent Reinforcement Learning
- DOI:10.1109/mlsp55214.2022.9943500
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Yudan Wang;Yue Wang;Yi Zhou;Alvaro Velasquez;Shaofeng Zou
- 通讯作者:Yudan Wang;Yue Wang;Yi Zhou;Alvaro Velasquez;Shaofeng Zou
Policy Gradient Method For Robust Reinforcement Learning
- DOI:10.48550/arxiv.2205.07344
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Yue Wang;Shaofeng Zou
- 通讯作者:Yue Wang;Shaofeng Zou
Robust Average-Reward Markov Decision Processes
鲁棒平均奖励马尔可夫决策过程
- DOI:10.1609/aaai.v37i12.26775
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wang, Yue;Velasquez, Alvaro;Atia, George;Prater-Bennette, Ashley;Zou, Shaofeng
- 通讯作者:Zou, Shaofeng
Online Robust Reinforcement Learning with Model Uncertainty
- DOI:
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Yue Wang;Shaofeng Zou
- 通讯作者:Yue Wang;Shaofeng Zou
Sample and Communication-Efficient Decentralized Actor-Critic Algorithms with Finite-Time Analysis
- DOI:
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Ziyi Chen;Yi Zhou;Rongrong Chen;Shaofeng Zou
- 通讯作者:Ziyi Chen;Yi Zhou;Rongrong Chen;Shaofeng Zou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaofeng Zou其他文献
Model-Free Robust Reinforcement Learning with Sample Complexity Analysis
具有样本复杂性分析的无模型鲁棒强化学习
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yudan Wang;Shaofeng Zou;Yue Wang - 通讯作者:
Yue Wang
Layered decoding and secrecy over degraded broadcast channels
降级广播信道的分层解码和保密
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Shaofeng Zou;Yingbin Liang;L. Lai;S. Shamai - 通讯作者:
S. Shamai
Asymptotic optimality of D-CuSum for quickest change detection under transient dynamics
D-CuSum 的渐近最优性用于瞬态动态下最快的变化检测
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Shaofeng Zou;Georgios Fellouris;V. Veeravalli - 通讯作者:
V. Veeravalli
Broadcast Networks With Layered Decoding and Layered Secrecy: Theory and Applications
具有分层解码和分层保密的广播网络:理论与应用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:20.6
- 作者:
Shaofeng Zou;Yingbin Liang;L. Lai;H. Poor;S. Shamai - 通讯作者:
S. Shamai
K-user degraded broadcast channel with secrecy outside a bounded range
K 用户降级广播信道,其保密性超出有限范围
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Shaofeng Zou;Yingbin Liang;L. Lai;H. Poor;S. Shamai - 通讯作者:
S. Shamai
Shaofeng Zou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaofeng Zou', 18)}}的其他基金
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 37.47万 - 项目类别:
Continuing Grant
CCSS: Collaborative Research: Quickest Threat Detection in Adversarial Sensor Networks
CCSS:协作研究:对抗性传感器网络中最快的威胁检测
- 批准号:
2112693 - 财政年份:2021
- 资助金额:
$ 37.47万 - 项目类别:
Standard Grant
CRII: CIF: Dynamic Network Event Detection with Time-Series Data
CRII:CIF:使用时间序列数据进行动态网络事件检测
- 批准号:
1948165 - 财政年份:2020
- 资助金额:
$ 37.47万 - 项目类别:
Standard Grant
CIF: Small: Reinforcement Learning with Function Approximation: Convergent Algorithms and Finite-sample Analysis
CIF:小型:带有函数逼近的强化学习:收敛算法和有限样本分析
- 批准号:
2007783 - 财政年份:2020
- 资助金额:
$ 37.47万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 37.47万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 37.47万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 37.47万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 37.47万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326905 - 财政年份:2024
- 资助金额:
$ 37.47万 - 项目类别:
Standard Grant