Collaborative Research: CNS Core: Medium: Towards Federated Learning over 5G Mobile Devices: High Efficiency, Low Latency, and Good Privacy

协作研究:CNS 核心:中:迈向 5G 移动设备上的联邦学习:高效率、低延迟和良好的隐私性

基本信息

  • 批准号:
    2106589
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Recent emerging federated learning (FL) allows distributed data sources to collaboratively train a global model without sharing their privacy sensitive raw data. However, due to the huge size of the deep learning model, the model downloads and updates generate significant amount of network traffic which exerts tremendous burden to existing telecommunication infrastructure. This project takes FL over 5G mobile devices as a workable application scenario to address this dilemma, which will significantly improve the design, analysis and implementation of FL over 5G mobile devices. The research outcomes will substantially enrich the knowledge of machine learning technologies and 5G systems and beyond. Moreover, this project is multidisciplinary, involving machine learning/deep learning/federated learning, edge computing, wireless communications and networking, security and privacy, computer architectural design, etc., which will serve as a fruitful training ground for both graduate and undergraduate students to equip them with multidisciplinary skills for future work force to boost the national economy. Furthermore, outreach activities to high school students will increase the participation of female and minority students in science and engineering.Specifically, by observing that iterative model updates tend to show high sparsity, the investigators leverage model update sparsity to design model pruning and quantization schemes to optimize local training and privacy-preserving model updating in order to lower both energy consumption and model update traffic. They achieve this design goal by conducting the four research tasks: (1) designing software-hardware co-designed model pruning schemes and adaptive quantization techniques in FL within a single 5G mobile device according to the local data and model sparsity property to reduce the local computation and memory access; (2) making sound trade-off between "working" (i.e., local computing) and "talking" (i.e., 5G wireless transmissions) to boost the overall energy/communications efficiency for FL over 5G mobile devices; (3) developing novel differentially private compression schemes based on sparsification property and quantization adaptability to rigorously protect data privacy while maintaining high model accuracy and communication efficiency in FL; and (4) building a testbed to thoroughly evaluate the proposed designs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近出现的联合学习(FL)允许分布式数据源在不共享隐私敏感原始数据的情况下协作训练全局模型。然而,由于深度学习模型的庞大规模,模型的下载和更新产生了大量的网络流量,给现有的电信基础设施带来了巨大的负担。本项目将FL over 5G移动设备作为一个可行的应用场景来解决这一困境,这将显著改善FL over 5G移动设备的设计、分析和实现。研究成果将极大地丰富机器学习技术和5G系统等方面的知识。此外,这个项目是多学科的,涉及机器学习/深度学习/联合学习、边缘计算、无线通信和网络、安全和隐私、计算机体系结构设计等,这将成为研究生和本科生富有成效的培训基地,为未来的劳动力培养多学科技能,促进国民经济发展。此外,针对高中生的外展活动将增加女性和少数族裔学生对科学和工程的参与。具体地说,通过观察迭代模型更新往往表现出高度稀疏性,调查人员利用模型更新稀疏性来设计模型剪枝和量化方案,以优化本地训练和隐私保护模型更新,从而降低能耗和模型更新流量。他们通过四个研究任务来实现这一设计目标:(1)根据本地数据和模型的稀疏性,在单个5G移动设备内设计软硬件共同设计的FL模型剪枝方案和自适应量化技术,以减少本地计算和内存访问;(2)在工作(即本地计算)和谈话(即5G无线传输)之间进行合理的权衡,以提高FL在5G移动设备上的整体能量/通信效率;(3)基于稀疏化特性和量化适应性开发新的差分私有压缩方案,以严格保护数据隐私,同时保持FL的高模型精度和通信效率;以及(4)建立试验台以彻底评估所提出的设计。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How to Leverage Mobile Vehicles to Balance the Workload in Multi-Access Edge Computing Systems
  • DOI:
    10.1109/tvt.2021.3119189
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Yiqin Deng;Zhigang Chen;Xianhao Chen;Xiaoheng Deng;Yuguang Fang
  • 通讯作者:
    Yiqin Deng;Zhigang Chen;Xianhao Chen;Xiaoheng Deng;Yuguang Fang
End-to-End Service Auction: A General Double Auction Mechanism for Edge Computing Services
  • DOI:
    10.1109/tnet.2022.3179239
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xianhao Chen;Guangyu Zhu;Haichuan Ding;Lan Zhang;Haixia Zhang;Yuguang Fang
  • 通讯作者:
    Xianhao Chen;Guangyu Zhu;Haichuan Ding;Lan Zhang;Haixia Zhang;Yuguang Fang
Federated Learning Over Multihop Wireless Networks With In-Network Aggregation
  • DOI:
    10.1109/twc.2022.3168538
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Xianhao Chen;Guangyu Zhu;Yiqin Deng;Yuguang Fang
  • 通讯作者:
    Xianhao Chen;Guangyu Zhu;Yiqin Deng;Yuguang Fang
From Resource Auction to Service Auction: An Auction Paradigm Shift in Wireless Networks
  • DOI:
    10.1109/mwc.005.2100627
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Xianhao Chen;Yiqin Deng;Guangyu Zhu;Danxin Wang;Ya-Nan Fang
  • 通讯作者:
    Xianhao Chen;Yiqin Deng;Guangyu Zhu;Danxin Wang;Ya-Nan Fang
Secure Transmission by Leveraging Multiple Intelligent Reflecting Surfaces in MISO Systems
  • DOI:
    10.1109/tmc.2021.3114167
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Jian Li;Lan Zhang;Kaiping Xue;Yuguang Fang
  • 通讯作者:
    Jian Li;Lan Zhang;Kaiping Xue;Yuguang Fang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tan Wong其他文献

Tan Wong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tan Wong', 18)}}的其他基金

EAGER: SC2: Intelligent spectrum collaboration via a dynamically reconfigurable radio architecture
EAGER:SC2:通过动态可重构无线电架构实现智能频谱协作
  • 批准号:
    1738065
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CIF: Small: Information transfer with guaranteed integrity
CIF:小:保证完整性的信息传输
  • 批准号:
    1320086
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
NeTS-NBD: Simulcast Enhanced Wireless Networks
NeTS-NBD:联播增强型无线网络
  • 批准号:
    0626863
  • 财政年份:
    2006
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CISE Research Resources: Reconfigurable Multi-Node Wireless Communication Testbed
CISE 研究资源:可重构多节点无线通信测试台
  • 批准号:
    0224410
  • 财政年份:
    2002
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
ITR: Cooperative Communication Schemes for Wireless Networks
ITR:无线网络协作通信方案
  • 批准号:
    0220287
  • 财政年份:
    2002
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
  • 批准号:
    2318573
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了