III: Medium: Collaborative Research: Deep Generative Modeling for Urban and Archaeological Recovery
III:媒介:协作研究:城市和考古恢复的深度生成模型
基本信息
- 批准号:2106717
- 负责人:
- 金额:$ 9.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modeling and understanding the evolution of urbanization over the course of human history elucidates a key aspect of human civilization, and can significantly help stakeholders today make better informed decisions for future urban development. However, the modeling of current and past urban spaces remains extremely challenging and a rigorous comparison between ancient and modern urban form is lacking. In this project, the team will provide an artificial intelligence based framework for discovering a relatively complex urban model (walls, corners, rooms, orientation, and built area clusters) from a sparse number of remote sensing and field observations. As opposed to cities present today, modeling a historical urban site is fundamentally limited to sparse (and few) data observations because most of the structures have been eroded or destroyed. The research team will provide a preliminary cyberinfrastructure, pursue 3D re-creations of historical sites, create a feature- and time-based urban taxonomy of ancient sites from the late Prehispanic and Colonial period Andes and the Bronze/Iron Age South Caucasus periods, while leveraging the NEH and American Council of Learned Societies funded GeoPACHA web platform for result dissemination. Moreover, the project spans three major US universities and five departments, led by five experienced senior researchers and a team of at least six multidisciplinary graduate students, as well as additional undergraduates, who will produce publications in top tier venues, conference workshops, as well as theses and PhD dissertations.To assist with modeling and understanding the evolution of urbanization over the course of human history, this project seeks a computational methodology for discovering a relatively complex urban model from a sparse number of observations. While performing a dense acquisition of a current city implies focusing on sensor deployment and on big data issues, modeling a historical urban site is fundamentally limited to sparse (and few) data observations because most of the structures have been eroded or destroyed. Inferencing approaches show significant promise, but they struggle in a situation of relatively sparse data and obscured structure. As a first domain application, the team will assist computational archaeologists having relatively sparse data but of an underlying structured site. First, they will solve a set cover problem to determine a discrete set of atomic elements and rules that are minimal yet sufficient to span the sparse data. Second, they will use these atomic elements and rules to produce sufficient data samples for training deep networks in a self-supervised manner in order to learn how to perform segmentation, classification, and completion. Finally, they will use the learned representations to model archaeological sites resulting in reconstructions, semantic understandings, and site taxonomies, for instance. Further, the team anticipates that the developed models can be re-tooled to assist with other domains also limited to sparse observations of an underlying structured region.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
模拟和理解城市化在人类历史进程中的演变阐明了人类文明的一个关键方面,并可以显著帮助今天的利益攸关方为未来的城市发展做出更明智的决策。然而,对现在和过去的城市空间的建模仍然具有极大的挑战性,缺乏对古代和现代城市形态的严格比较。在这个项目中,该团队将提供一个基于人工智能的框架,用于从稀少的遥感和现场观察中发现相对复杂的城市模型(墙、角落、房间、方向和建成的区域群)。与现在的城市不同,对历史城市遗址的建模基本上局限于稀少的(和很少的)数据观测,因为大多数结构已经被侵蚀或摧毁。研究小组将提供初步的网络基础设施,进行历史遗址的3D重建,创建基于特征和时间的安第斯前西班牙晚期和殖民地时期以及青铜/铁器时代南高加索时期的古迹城市分类法,同时利用NEH和美国学会理事会资助的GeoPACHA网络平台传播结果。此外,该项目横跨美国三所主要大学和五个系,由五名经验丰富的资深研究人员和至少六名多学科研究生组成的团队领导,以及其他本科生,他们将在顶级会场、会议研讨会以及论文和博士学位论文中发表出版物。为了帮助建模和理解人类历史进程中城市化的演变,该项目寻求一种计算方法,从稀少的观察中发现相对复杂的城市模型。虽然对当前城市进行密集收购意味着要专注于传感器部署和大数据问题,但对历史城市遗址进行建模从根本上仅限于稀少(且很少)的数据观测,因为大多数结构已被侵蚀或摧毁。推理方法显示出巨大的前景,但它们在数据相对稀少、结构模糊的情况下举步维艰。作为第一个领域应用,该团队将协助具有相对稀疏数据但底层结构化遗址的计算考古学家。首先,他们将解决集合覆盖问题,以确定原子元素和规则的离散集合,这些元素和规则最小,但足以跨越稀疏数据。其次,他们将使用这些原子元素和规则来产生足够的数据样本,用于以自我监督的方式训练深度网络,以便学习如何执行分割、分类和完成。最后,他们将使用学习到的表示法来模拟考古遗址,例如,导致重建、语义理解和遗址分类。此外,该团队预计,开发的模型可以重新装备,以帮助其他领域也限于对基础结构区域的稀疏观察。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Wernke其他文献
Steven Wernke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Wernke', 18)}}的其他基金
Doctoral Dissertation Improvement Grant: Legacies of Colonial Dislocation and Resettlement
博士论文改进补助金:殖民地流离失所和重新安置的遗产
- 批准号:
2024316 - 财政年份:2020
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Colonian Negotiations in an Inka Provincial Village
印加省村庄的殖民谈判
- 批准号:
0716883 - 财政年份:2007
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 9.3万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2406648 - 财政年份:2023
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant