Collaborative Research: CNS Core: Medium: Towards Federated Learning over 5G Mobile Devices: High Efficiency, Low Latency, and Good Privacy

协作研究:CNS 核心:中:迈向 5G 移动设备上的联邦学习:高效率、低延迟和良好的隐私性

基本信息

  • 批准号:
    2106761
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Recent emerging federated learning (FL) allows distributed data sources to collaboratively train a global model without sharing their privacy sensitive raw data. However, due to the huge size of the deep learning model, the model downloads and updates generate significant amount of network traffic which exerts tremendous burden to existing telecommunication infrastructure. This project takes FL over 5G mobile devices as a workable application scenario to address this dilemma, which will significantly improve the design, analysis and implementation of FL over 5G mobile devices. The research outcomes will substantially enrich the knowledge of machine learning technologies and 5G systems and beyond. Moreover, this project is multidisciplinary, involving machine learning/deep learning/federated learning, edge computing, wireless communications and networking, security and privacy, computer architectural design, etc., which will serve as a fruitful training ground for both graduate and undergraduate students to equip them with multidisciplinary skills for future work force to boost the national economy. Furthermore, outreach activities to high school students will increase the participation of female and minority students in science and engineering.Specifically, by observing that iterative model updates tend to show high sparsity, the investigators leverage model update sparsity to design model pruning and quantization schemes to optimize local training and privacy-preserving model updating in order to lower both energy consumption and model update traffic. They achieve this design goal by conducting the four research tasks: (1) designing software-hardware co-designed model pruning schemes and adaptive quantization techniques in FL within a single 5G mobile device according to the local data and model sparsity property to reduce the local computation and memory access; (2) making sound trade-off between "working" (i.e., local computing) and "talking" (i.e., 5G wireless transmissions) to boost the overall energy/communications efficiency for FL over 5G mobile devices; (3) developing novel differentially private compression schemes based on sparsification property and quantization adaptability to rigorously protect data privacy while maintaining high model accuracy and communication efficiency in FL; and (4) building a testbed to thoroughly evaluate the proposed designs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近出现的联邦学习(FL)允许分布式数据源协作训练全局模型,而无需共享其隐私敏感的原始数据。然而,由于深度学习模型的巨大规模,模型的下载和更新会产生大量的网络流量,这给现有的电信基础设施带来了巨大的负担。该项目将FL over 5G移动的设备作为解决这一困境的可行应用场景,这将显著改善FL over 5G移动的设备的设计,分析和实现。研究成果将大大丰富机器学习技术和5G系统及其他领域的知识。而且,这个项目是多学科的,涉及机器学习/深度学习/联邦学习、边缘计算、无线通信和网络、安全和隐私、计算机架构设计等,这将成为一个富有成效的培训基地,为研究生和本科生提供多学科技能,为未来的劳动力提供支持,促进国家经济发展。此外,对高中生的外展活动将增加女性和少数民族学生在科学和工程领域的参与。具体而言,通过观察迭代模型更新往往表现出高稀疏性,研究人员利用模型更新稀疏性来设计模型修剪和量化方案,以优化本地训练和隐私保护模型更新,从而降低能耗和模型更新流量。他们通过进行四项研究任务来实现这一设计目标:(1)根据本地数据和模型稀疏性,在单个5G移动终端内的FL中设计软硬件协同设计的模型修剪方案和自适应量化技术,以减少本地计算和内存访问;(2)在“工作”(即,本地计算)和“通话”(即,(3)开发基于稀疏化特性和量化适应性的新型差分隐私压缩方案,以严格保护数据隐私,同时保持FL中的高模型准确性和通信效率;以及(4)该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的评估来支持。影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hybrid Local SGD for Federated Learning with Heterogeneous Communications
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuanxiong Guo;Ying Sun;Rui Hu;Yanmin Gong
  • 通讯作者:
    Yuanxiong Guo;Ying Sun;Rui Hu;Yanmin Gong
Energy-Efficient Distributed Machine Learning at Wireless Edge with Device-to-Device Communication
Scalable and Low-Latency Federated Learning With Cooperative Mobile Edge Networking
  • DOI:
    10.1109/tmc.2022.3216837
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Zhenxiao Zhang;Zhidong Gao;Yuanxiong Guo;Yanmin Gong
  • 通讯作者:
    Zhenxiao Zhang;Zhidong Gao;Yuanxiong Guo;Yanmin Gong
Concentrated Differentially Private Federated Learning With Performance Analysis
  • DOI:
    10.1109/ojcs.2021.3099108
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Rui Hu;Yuanxiong Guo;Yanmin Gong
  • 通讯作者:
    Rui Hu;Yuanxiong Guo;Yanmin Gong
Constructing Mobile Crowdsourced COVID-19 Vulnerability Map With Geo-Indistinguishability
  • DOI:
    10.1109/jiot.2022.3158895
  • 发表时间:
    2022-09-15
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Chen, Rui;Li, Liang;Pan, Miao
  • 通讯作者:
    Pan, Miao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuanxiong Guo其他文献

Coalitional Datacenter Energy Cost Optimization in Electricity Markets
电力市场中的联合数据中心能源成本优化
Practical Collaborative Learning for Crowdsensing in the Internet of Things with Differential Privacy
具有差异隐私的物联网中群体感知的实用协作学习
A stochastic game approach to cyber-physical security with applications to smart grid
网络物理安全的随机博弈方法及其在智能电网中的应用
CrossFuser: Multi-Modal Feature Fusion for End-to-End Autonomous Driving Under Unseen Weather Conditions
CrossFuser:多模态特征融合,实现未见天气条件下的端到端自动驾驶
Beef Up the Edge: Spectrum-Aware Placement of Edge Computing Services for the Internet of Things
增强边缘:物联网边缘计算服务的频谱感知布局
  • DOI:
    10.1109/tmc.2018.2883952
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Haichuan Ding;Yuanxiong Guo;Xuanheng Li;Yuguang Fang
  • 通讯作者:
    Yuguang Fang

Yuanxiong Guo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuanxiong Guo', 18)}}的其他基金

Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
  • 批准号:
    2318663
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: RI: Towards Scalable, Resilient and Robust Foraging with Heterogeneous Robot Swarms
合作研究:CISE-MSI:DP:RI:利用异构机器人群实现可扩展、有弹性和稳健的觅食
  • 批准号:
    2318683
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RAPID: Collaborative: Location Privacy Preserving COVID-19 Symptom Map Construction via Mobile Crowdsourcing for Proactive Constrained Resource Allocation
RAPID:协作:通过移动众包构建位置隐私保护 COVID-19 症状图,以实现主动的受限资源分配
  • 批准号:
    2029685
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
  • 批准号:
    2318573
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了