RAPID: Collaborative: Location Privacy Preserving COVID-19 Symptom Map Construction via Mobile Crowdsourcing for Proactive Constrained Resource Allocation
RAPID:协作:通过移动众包构建位置隐私保护 COVID-19 症状图,以实现主动的受限资源分配
基本信息
- 批准号:2029685
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recent pandemic of COVID-19 has caused a public health crisis to US and many other countries in the world. Since there is currently no medication to treat COVID-19, the most challenging question is how to effectively allocate constrained healthcare resources to the next potential outburst communities or areas, so that we can halt or even prevent the virus' further spreading. The current reactive efforts of relying on people to visit their doctors or testing stations for collecting infection data may not work in an efficient and timely manner due to the limited coverage, high cost, and increased exposure risk for people to be congested at those places. This project develops a fine-grained and location privacy-preserving COVID19 symptom map (CSM) via mobile crowdsourcing, where the symptoms may include fever, cough, or shortness of breath. The proposed CSM is promising in its ability to identify the potential outbreak areas and facilitate the proactive and dynamic allocation of healthcare resources. Meanwhile, the location privacy preserving feature will protect the mobile crowdsourcing participants from bias or discrimination, encouraging them to participate for the public good. The project involves synergized efforts from mobile crowdsourcing, public health science, data analytics, privacy, and social science. Education and outreach activities are designed to increase the participation of women and minority in science and engineering. This project develops an interdisciplinary framework for location privacy preservation, mobile crowdsourcing, data analytics, social science, and public health science, and contains a research plan with four interconnected thrusts. First, a novel location differential privacy preservation mechanism named differentially private hexagonal hierarchical geospatial indexing system (DPH3) will be developed, which can well represent physical community structure in the map, guarantee mobile crowdsourcing participants’ location differential privacy, and provide high mobile crowdsourcing utility for CSM construction in terms of map coverage and accuracy. Second, a coverage-aware crowdsourcing participant recruitment scheme based on DPH3 and approximation algorithm will be designed to guarantee the crowdsensing coverage while preserving participants' location differential privacy. Third, a quality-assured CSM will be constructed by using virus propagation model as the prior knowledge for detrending in ordinary kriging and robust estimation for mitigating the impact of location privacy preserving noises added by DPH3. Fourth, a strategic communication approach to community engagement from the perspective of social science will be used to motivate community members’ activeness in information seeking and sharing about COVID-19 symptoms, facilitate crowdsourcing needed for the CSM, as well as empower the community members.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近新冠肺炎的大流行已经给美国和世界上许多其他国家造成了公共卫生危机。由于目前还没有治疗新冠肺炎的药物,最具挑战性的问题是如何将有限的医疗资源有效地分配到下一个潜在的暴发社区或地区,以便我们能够阻止甚至阻止病毒的进一步传播。目前依赖人们去看医生或检测站收集感染数据的反应性努力可能不会以有效和及时的方式发挥作用,因为这些地方的覆盖范围有限,成本高,暴露风险增加。该项目通过移动众包开发了细粒度和保护位置隐私的COVID19症状地图(CSM),症状可能包括发烧、咳嗽或呼吸急促。拟议的CSM在识别潜在暴发地区和促进卫生保健资源的主动和动态分配方面很有希望。同时,位置隐私保护功能将保护移动众包参与者免受偏见或歧视,鼓励他们参与公共利益。该项目涉及移动众包、公共卫生科学、数据分析、隐私和社会科学的协同努力。教育和外联活动旨在增加妇女和少数群体对科学和工程的参与。该项目为位置隐私保护、移动众包、数据分析、社会科学和公共卫生科学开发了一个跨学科框架,并包含一个具有四个相互关联的推进的研究计划。首先,提出了一种新的位置差异化隐私保护机制--差异化私有六边形层次化地理空间索引系统(DPH3),该机制能够很好地表示地图上的物理社区结构,保证移动众包参与者的位置差异化隐私,并在地图覆盖率和准确性方面为CSM建设提供高移动众包效用。其次,设计了一种基于DPH3和近似算法的覆盖感知的众包参与者招募方案,在保证众包覆盖的同时保护参与者的位置差分隐私。第三,将病毒传播模型作为常规克立格法中去趋势的先验知识,并利用稳健估计来减轻DPH3添加的位置隐私保护噪声的影响,从而构建质量保证的CSM。第四,从社会科学角度对社区参与的战略传播方法将被用来激发社区成员寻找和分享有关新冠肺炎症状的信息的积极性,促进CSM所需的众包,以及赋予社区成员权力。该奖项反映了国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geo-Indistinguishablility for Crowdsourced-Based Radio Environment Map Construction
基于众包的无线电环境地图构建的地理不可区分性
- DOI:10.1109/globecom42002.2020.9348142
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Amin, Shahira;Li, Liang;Guo, Yuanxiong;Pan, Miao;Gong, Yanmin
- 通讯作者:Gong, Yanmin
Federated Learning with Sparsification-Amplified Privacy and Adaptive Optimization
- DOI:10.24963/ijcai.2021/202
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Rui Hu;Yanmin Gong;Yuanxiong Guo
- 通讯作者:Rui Hu;Yanmin Gong;Yuanxiong Guo
Concentrated Differentially Private Federated Learning With Performance Analysis
- DOI:10.1109/ojcs.2021.3099108
- 发表时间:2021
- 期刊:
- 影响因子:5.9
- 作者:Rui Hu;Yuanxiong Guo;Yanmin Gong
- 通讯作者:Rui Hu;Yuanxiong Guo;Yanmin Gong
COVID-19 Vulnerability Map Construction via Location Privacy Preserving Mobile Crowdsourcing
- DOI:10.1109/globecom42002.2020.9348141
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Rui Chen;Liang Li;Jeffrey Jiarui Chen;Ronghui Hou;Yanmin Gong;Yuanxiong Guo;M. Pan
- 通讯作者:Rui Chen;Liang Li;Jeffrey Jiarui Chen;Ronghui Hou;Yanmin Gong;Yuanxiong Guo;M. Pan
Private Empirical Risk Minimization with Analytic Gaussian Mechanism for Healthcare System
医疗保健系统的分析高斯机制的私人经验风险最小化
- DOI:10.1109/tbdata.2020.2997732
- 发表时间:2020
- 期刊:
- 影响因子:7.2
- 作者:Ding, Jiahao;Errapotu, Sai Mounika;Guo, Yuanxiong;Zhang, Haixia;Yuan, Dongfeng;Pan, Miao
- 通讯作者:Pan, Miao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuanxiong Guo其他文献
Coalitional Datacenter Energy Cost Optimization in Electricity Markets
电力市场中的联合数据中心能源成本优化
- DOI:
10.1145/3077839.3077860 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zhenjian Yu;Yuanxiong Guo;M. Pan - 通讯作者:
M. Pan
Practical Collaborative Learning for Crowdsensing in the Internet of Things with Differential Privacy
具有差异隐私的物联网中群体感知的实用协作学习
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yuanxiong Guo;Yanmin Gong - 通讯作者:
Yanmin Gong
A stochastic game approach to cyber-physical security with applications to smart grid
网络物理安全的随机博弈方法及其在智能电网中的应用
- DOI:
10.1109/infcomw.2018.8406833 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yuanxiong Guo;Yanmin Gong;Laurent L. Njilla;Charles A. Kamhoua - 通讯作者:
Charles A. Kamhoua
CrossFuser: Multi-Modal Feature Fusion for End-to-End Autonomous Driving Under Unseen Weather Conditions
CrossFuser:多模态特征融合,实现未见天气条件下的端到端自动驾驶
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Weishang Wu;Xiaoheng Deng;Ping Jiang;Shaohua Wan;Yuanxiong Guo - 通讯作者:
Yuanxiong Guo
Beef Up the Edge: Spectrum-Aware Placement of Edge Computing Services for the Internet of Things
增强边缘:物联网边缘计算服务的频谱感知布局
- DOI:
10.1109/tmc.2018.2883952 - 发表时间:
2019-12 - 期刊:
- 影响因子:7.9
- 作者:
Haichuan Ding;Yuanxiong Guo;Xuanheng Li;Yuguang Fang - 通讯作者:
Yuguang Fang
Yuanxiong Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuanxiong Guo', 18)}}的其他基金
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
- 批准号:
2318663 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: RI: Towards Scalable, Resilient and Robust Foraging with Heterogeneous Robot Swarms
合作研究:CISE-MSI:DP:RI:利用异构机器人群实现可扩展、有弹性和稳健的觅食
- 批准号:
2318683 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Towards Federated Learning over 5G Mobile Devices: High Efficiency, Low Latency, and Good Privacy
协作研究:CNS 核心:中:迈向 5G 移动设备上的联邦学习:高效率、低延迟和良好的隐私性
- 批准号:
2106761 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似国自然基金
分段式永磁球形电机多自由度位置检测及协同控制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
双自适应Levenberg–Marquardt协同多自由度调制的超高速永磁同步电机无位置传感器控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
视觉协同感知的机器人抓传目标位置优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
动车组永磁同步牵引电机方波弱磁区无位置传感器协同优化控制研究
- 批准号:52007151
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
航空与地面一体化重力数据协同高分辨率场源位置和密度反演方法研究
- 批准号:42074147
- 批准年份:2020
- 资助金额:59 万元
- 项目类别:面上项目
基于恒中心位置约束的高速公路车辆队列协同控制研究
- 批准号:51905140
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
个性化位置隐私信息的协同保护及评估
- 批准号:61872441
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
基于激光-磁场协同调控电弧的厚板窄间隙弧焊机理
- 批准号:51705173
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于高精度位置信息的多车协同碰撞预警关键技术的研究
- 批准号:61671482
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
多足步行机器人力/位置/姿态协同规划及其混合控制研究
- 批准号:51475177
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Proposal GEOPAths:IN Recruiting through location-based Curriculum and Field and Laboratory Research Experience for High School Students, Teachers and Undergraduates
合作提案 GEOPAths:IN 通过基于地点的课程以及针对高中生、教师和本科生的现场和实验室研究经验进行招聘
- 批准号:
2119989 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Proposal GEOPAths:IN Recruiting through location-based Curriculum and Field and Laboratory Research Experience for High School Students, Teachers and Undergraduates
合作提案 GEOPAths:IN 通过基于地点的课程以及针对高中生、教师和本科生的现场和实验室研究经验进行招聘
- 批准号:
2119998 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Belmont Forum Collaborative Research:Data-driven Disaster Response Systems Dependent on Time of Day, Season and Location for Megacities
贝尔蒙特论坛合作研究:依赖于一天中的时间、季节和位置的特大城市数据驱动的灾难响应系统
- 批准号:
2022720 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Privacy protection of Vehicles location in Spatial Crowdsourcing under realistic adversarial models
合作研究:SaTC:核心:小:现实对抗模型下空间众包中车辆位置的隐私保护
- 批准号:
2136948 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Privacy protection of Vehicles location in Spatial Crowdsourcing under realistic adversarial models
合作研究:SaTC:核心:小:现实对抗模型下空间众包中车辆位置的隐私保护
- 批准号:
2029881 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Privacy protection of Vehicles location in Spatial Crowdsourcing under realistic adversarial models
合作研究:SaTC:核心:小:现实对抗模型下空间众包中车辆位置的隐私保护
- 批准号:
2029976 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging Massive Smartphone Location Data to Improve Understanding and Prediction of Behavior in Hurricanes
合作研究:利用海量智能手机位置数据提高对飓风行为的理解和预测
- 批准号:
2002584 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Leveraging Massive Smartphone Location Data to Improve Understanding and Prediction of Behavior in Hurricanes
合作研究:利用海量智能手机位置数据提高对飓风行为的理解和预测
- 批准号:
2002589 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
RAPID: Collaborative: Location Privacy Preserving COVID-19 Symptom Map Construction via Mobile Crowdsourcing for Proactive Constrained Resource Allocation
RAPID:协作:通过移动众包构建位置隐私保护 COVID-19 症状图,以实现主动的受限资源分配
- 批准号:
2029569 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
WiFiUS: Collaborative Research: Scalable Edge Architecture for Massive Location-Aware Heterogeneous IoT Systems
WiFiUS:协作研究:大规模位置感知异构物联网系统的可扩展边缘架构
- 批准号:
1702952 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant