III: Medium: Causal inference in biobanks: Leveraging genetics to infer causal relationships using electronic health records
III:中:生物库中的因果推断:利用电子健康记录利用遗传学来推断因果关系
基本信息
- 批准号:2106908
- 负责人:
- 金额:$ 119.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The past several years have witnessed major efforts to collect genetic data from patients in large health systems to enable research aimed at improving patient health. This data can potentially identify risk factors that cause disease and improve treatment. However, the observational nature of these datasets makes such inferences challenging due, in part, to the difficulty of differentiating between correlation and causation which can obscure true relationships. This project will utilize and extend recently developed techniques in causal inference to allow for the identification of causal relationships within the medical data and overcome this difficulty. Advancing this research is critical for improving the outlook for individuals who suffer from today’s most prevalent common, complex disorders and will also provide general insights into the analysis of observational data. The project leverages efforts at UCLA to broaden participation in computing and will incorporate graduate and undergraduate students from diverse backgrounds.We propose to leverage modern techniques for causal inference coupled with the unique characteristics of genetic data collected in Biobanks to solve three key problems in biomedicine and epidemiology: the identification of risk factors for disease, predicting likely responders to a potential treatment, and identifying latent disease subtypes. The advance in causal inference that is directly relevant to our problem is the development in theory on causal graphs as a unifying framework to represent and reason about causal effects. We will use these graphs to test and estimate causal relationships between relevant exposures measured in the biobank and diseases (for example, LDL cholesterol and heart attack).Crucially, we will leverage the availability of genetic data to serve as causal anchors (or instrumental variables) that can enable the estimation of causal effects even in the presence of confounders expanding the technique of mendelian randomization that is widely used in epidemiology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去几年中,我们见证了从大型卫生系统中收集患者遗传数据的重大努力,以便能够进行旨在改善患者健康的研究。这些数据可以潜在地识别导致疾病的风险因素并改善治疗。然而,这些数据集的观察性质使得这种推断具有挑战性,部分原因是难以区分相关性和因果关系,这可能会掩盖真实的关系。本项目将利用和扩展最近开发的因果推理技术,以确定医疗数据中的因果关系,并克服这一困难。推进这项研究对于改善患有当今最普遍的常见复杂疾病的个人的前景至关重要,并且还将为观察数据的分析提供一般见解。该项目利用加州大学洛杉矶分校的努力,以扩大参与计算,并将纳入来自不同背景的研究生和本科生。我们建议利用现代技术的因果推理,再加上在生物库中收集的遗传数据的独特特征,以解决生物医学和流行病学的三个关键问题:识别疾病的危险因素,预测对潜在治疗的可能反应,以及识别潜在疾病亚型。与我们的问题直接相关的因果推理的进步是因果图理论的发展,因果图是表示和推理因果效应的统一框架。我们将使用这些图表来测试和估计生物库中测量的相关暴露与疾病之间的因果关系(例如,低密度脂蛋白胆固醇和心脏病发作)。至关重要的是,我们将利用基因数据的可用性作为因果锚点,(或工具变量)这使得即使在存在混杂因素的情况下也能够估计因果效应,从而扩展了广泛用于该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comments on Nick Huntington–Klein's review ‘Pearl before economists: The Book of Why and empirical economics’
- DOI:10.1080/1350178x.2023.2170859
- 发表时间:2023-01
- 期刊:
- 影响因子:1.2
- 作者:J. Pearl
- 通讯作者:J. Pearl
Bounds on Causal Effects and Application to High Dimensional Data
因果效应的界限及其在高维数据中的应用
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:J. Pearl
- 通讯作者:J. Pearl
A Crash Course in Good and Bad Controls
- DOI:10.1177/00491241221099552
- 发表时间:2022-05-20
- 期刊:
- 影响因子:6.3
- 作者:Cinelli, Carlos;Forney, Andrew;Pearl, Judea
- 通讯作者:Pearl, Judea
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eleazar Eskin其他文献
Improving the usability and archival stability of bioinformatics software
- DOI:
10.1186/s13059-019-1649-8 - 发表时间:
2019-02-27 - 期刊:
- 影响因子:9.400
- 作者:
Serghei Mangul;Lana S. Martin;Eleazar Eskin;Ran Blekhman - 通讯作者:
Ran Blekhman
Systematic benchmarking of omics computational tools
组学计算工具的系统基准测试
- DOI:
10.1038/s41467-019-09406-4 - 发表时间:
2019-03-27 - 期刊:
- 影响因子:15.700
- 作者:
Serghei Mangul;Lana S. Martin;Brian L. Hill;Angela Ka-Mei Lam;Margaret G. Distler;Alex Zelikovsky;Eleazar Eskin;Jonathan Flint - 通讯作者:
Jonathan Flint
Discrete profile comparison using information bottleneck
- DOI:
10.1186/1471-2105-7-s1-s8 - 发表时间:
2006-03-20 - 期刊:
- 影响因子:3.300
- 作者:
Sean O'Rourke;Gal Chechik;Robin Friedman;Eleazar Eskin - 通讯作者:
Eleazar Eskin
MEF: Malicious Email Filter - A UNIX Mail Filter That Detects Malicious Windows Executables
MEF:恶意电子邮件过滤器 - 检测恶意 Windows 可执行文件的 UNIX 邮件过滤器
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
M. Schultz;Eleazar Eskin;E. Zadok;Manasi Bhattacharyya;Salvatore J. Stolfo - 通讯作者:
Salvatore J. Stolfo
Dealing with large diagonals in kernel matrices
- DOI:
10.1007/bf02530507 - 发表时间:
2003-06-01 - 期刊:
- 影响因子:0.600
- 作者:
Jason Weston;Bernhard Schölkopf;Eleazar Eskin;Christina Leslie;William Stafford Noble - 通讯作者:
William Stafford Noble
Eleazar Eskin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eleazar Eskin', 18)}}的其他基金
III:Small: Replication Studies for High Dimensional Data: Insights into Confounding and Heterogeneity
III:小:高维数据的复制研究:洞察混杂和异质性
- 批准号:
1910885 - 财政年份:2019
- 资助金额:
$ 119.99万 - 项目类别:
Continuing Grant
III: Medium: Detecting Low Dimensional Structures in Genomic Data
III:中:检测基因组数据中的低维结构
- 批准号:
1705197 - 财政年份:2017
- 资助金额:
$ 119.99万 - 项目类别:
Standard Grant
III: Small: Causal and Statistical Inference in the Presence of Confounding Factors
III:小:存在混杂因素时的因果和统计推断
- 批准号:
1320589 - 财政年份:2013
- 资助金额:
$ 119.99万 - 项目类别:
Standard Grant
BSF:2012304:Methods for Preprocessing Population Sequence Data
BSF:2012304:群体序列数据的预处理方法
- 批准号:
1331176 - 财政年份:2013
- 资助金额:
$ 119.99万 - 项目类别:
Standard Grant
III: Medium: Meta-analysis reinterpreted using causal graphs
III:中:使用因果图重新解释荟萃分析
- 批准号:
1302448 - 财政年份:2013
- 资助金额:
$ 119.99万 - 项目类别:
Continuing Grant
III: Medium: Private Identification of Relatives and Private GWAS: First Steps in the New Field of CryptoGenomics
III:媒介:亲属的私人身份识别和私人 GWAS:密码基因组学新领域的第一步
- 批准号:
1065276 - 财政年份:2011
- 资助金额:
$ 119.99万 - 项目类别:
Standard Grant
III: Small: Inference of Causal Regulatory Relationships from Genetic Studies
III:小:从遗传研究中推断因果调节关系
- 批准号:
0916676 - 财政年份:2009
- 资助金额:
$ 119.99万 - 项目类别:
Continuing Grant
Collaborative Research: Design and Analysis of Compressed Sensing DNA Microarrays
合作研究:压缩传感 DNA 微阵列的设计和分析
- 批准号:
0729049 - 财政年份:2007
- 资助金额:
$ 119.99万 - 项目类别:
Continuing Grant
Collaborative Research: SEIII: Estimating Haplotype Frequencies
合作研究:SEIII:估计单倍型频率
- 批准号:
0731455 - 财政年份:2007
- 资助金额:
$ 119.99万 - 项目类别:
Standard Grant
Collaborative Research: SEIII: Estimating Haplotype Frequencies
合作研究:SEIII:估计单倍型频率
- 批准号:
0513612 - 财政年份:2005
- 资助金额:
$ 119.99万 - 项目类别:
Standard Grant
相似海外基金
SaTC: CORE: Medium: Testing the causal influence of social media on well-being and animosity
SaTC:核心:中:测试社交媒体对幸福感和敌意的因果影响
- 批准号:
2334148 - 财政年份:2024
- 资助金额:
$ 119.99万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 119.99万 - 项目类别:
Standard Grant
III: Medium: CARE: Interactive Systems for Scalable, Causal Data Science
III:媒介:CARE:可扩展因果数据科学的交互式系统
- 批准号:
2312561 - 财政年份:2023
- 资助金额:
$ 119.99万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312502 - 财政年份:2023
- 资助金额:
$ 119.99万 - 项目类别:
Standard Grant
III: Medium: Counterfactual-Based Supports For Visual Causal Inference
III:媒介:基于反事实的视觉因果推理支持
- 批准号:
2211845 - 财政年份:2022
- 资助金额:
$ 119.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Causal Performance Debugging for Highly-Configurable Systems
合作研究:SHF:中:高度可配置系统的因果性能调试
- 批准号:
2107405 - 财政年份:2021
- 资助金额:
$ 119.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Causal Performance Debugging for Highly-Configurable Systems
合作研究:SHF:中:高度可配置系统的因果性能调试
- 批准号:
2107463 - 财政年份:2021
- 资助金额:
$ 119.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Core: Medium: Causal Performance Debugging for Highly-Configurable Systems
协作研究:SHF:核心:中:高度可配置系统的因果性能调试
- 批准号:
2106853 - 财政年份:2021
- 资助金额:
$ 119.99万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Causal Inference: Identification, Learning, and Decision-Making
RI:媒介:协作研究:因果推理:识别、学习和决策
- 批准号:
2011463 - 财政年份:2019
- 资助金额:
$ 119.99万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: A Unified and Declarative Approach to Causal Analysis for Big Data
III:媒介:协作研究:大数据因果分析的统一声明式方法
- 批准号:
1703331 - 财政年份:2017
- 资助金额:
$ 119.99万 - 项目类别:
Standard Grant