III: Small: Causal and Statistical Inference in the Presence of Confounding Factors
III:小:存在混杂因素时的因果和统计推断
基本信息
- 批准号:1320589
- 负责人:
- 金额:$ 49.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technical:The presence of unmeasured confounding factors can result in incorrect statistical and causal inferences if the confounding factors are correlated with the observed data. This phenomenon has been well documented in at least two important applications. One application is identifying genetic variation involved in disease from populations of related individuals. A second application is identifying genes active in a disease when comparing disease and health samples. In this proposal we propose a new approach to correct for unobserved confounders in taking advantage of insights into how confounders affect high dimensional data. These insights motivate a formal definition for a specific type of confounder which we term a 'low-rank confounder.' Formalizing this definition allows us to motivate methods for correcting for the effects of these types confounders even when the confounders are not observed. Our proposal will develop a theory of how confounders affect data and under what conditions unobserved confounders can be corrected. The proposed theory is related to recent developments in understanding sparsity which has been well studied in electrical engineering, computer science and statistics. The result of our proposed methods will lead to improved methods for applications where such confounders are present.Non-technical:Inference of knowledge from high dimensional data is a fundamental problem affecting virtually all areas of science including physics, astronomy, chemistry, computer science, social science and many areas of biology. Many of these problems are driven by recently available large sources of data and advances in measurement or data collection technologies. A major challenge is the presence of unknown (and unmeasured) confounding factors. Confounding factors are variables that are often not observed in the data, but are correlated with various features of the data. Unfortunately, confounding factors can cause incorrect inferences. This phenomenon has been well documented in at least two important applications: one application is identifying genetic variation involved in disease from populations of related individuals, and a second application is identifying genes active in a disease when comparing disease and health samples. There are traditional approaches to perform inference if the confounders are observed in the data. However, dealing with unobserved confounders is more difficult. This project will develop and study a new approach to correct for unobserved confounders, taking advantage of insights into how confounders affect high dimensional data. The project has broad impact due to its utility in a wide range of scientific questions, through the interdisciplinary research opportunities provided to undergraduate and graduate students, and through the distribution of software and data.
技术:如果混杂因素与观察数据相关,则存在未测量的混杂因素可能导致不正确的统计和因果推断。这种现象至少在两个重要的应用中得到了很好的证明。一个应用是从相关个体的群体中识别与疾病有关的遗传变异。第二个应用是在比较疾病和健康样本时识别在疾病中活跃的基因。在这个建议中,我们提出了一种新的方法来纠正未观察到的混杂因素,利用混杂因素如何影响高维数据的见解。这些见解激发了一个正式的定义,为特定类型的混杂因素,我们称之为“低秩混杂因素。“将这一定义形式化,使我们能够激励纠正这些类型混杂因素影响的方法,即使在没有观察到混杂因素的情况下。我们的建议将发展一个理论,如何混杂影响数据,在什么条件下未观察到的混杂可以被纠正。所提出的理论是有关最近的事态发展,了解稀疏性已在电气工程,计算机科学和统计学研究。我们所提出的方法的结果将导致改进的方法的应用程序中,这样的混淆present.Non-technical:从高维数据的知识推理是一个基本的问题,影响几乎所有领域的科学,包括物理学,天文学,化学,计算机科学,社会科学和生物学的许多领域。其中许多问题是由最近可获得的大量数据来源以及测量或数据收集技术的进步造成的。一个主要的挑战是存在未知的(和未测量的)混杂因素。混杂因素是在数据中经常观察不到的变量,但与数据的各种特征相关。不幸的是,混杂因素可能导致不正确的推断。这种现象在至少两个重要的应用中得到了很好的证明:一个应用是从相关个体的群体中识别与疾病有关的遗传变异,第二个应用是在比较疾病和健康样本时识别疾病中的活性基因。如果在数据中观察到混杂因素,则有传统的方法来执行推断。然而,处理未观察到的混杂因素更为困难。该项目将开发和研究一种新的方法来纠正未观察到的混杂因素,利用混杂因素如何影响高维数据的见解。该项目具有广泛的影响,由于其在广泛的科学问题的效用,通过跨学科的研究机会提供给本科生和研究生,并通过软件和数据的分布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eleazar Eskin其他文献
Improving the usability and archival stability of bioinformatics software
- DOI:
10.1186/s13059-019-1649-8 - 发表时间:
2019-02-27 - 期刊:
- 影响因子:9.400
- 作者:
Serghei Mangul;Lana S. Martin;Eleazar Eskin;Ran Blekhman - 通讯作者:
Ran Blekhman
Systematic benchmarking of omics computational tools
组学计算工具的系统基准测试
- DOI:
10.1038/s41467-019-09406-4 - 发表时间:
2019-03-27 - 期刊:
- 影响因子:15.700
- 作者:
Serghei Mangul;Lana S. Martin;Brian L. Hill;Angela Ka-Mei Lam;Margaret G. Distler;Alex Zelikovsky;Eleazar Eskin;Jonathan Flint - 通讯作者:
Jonathan Flint
Discrete profile comparison using information bottleneck
- DOI:
10.1186/1471-2105-7-s1-s8 - 发表时间:
2006-03-20 - 期刊:
- 影响因子:3.300
- 作者:
Sean O'Rourke;Gal Chechik;Robin Friedman;Eleazar Eskin - 通讯作者:
Eleazar Eskin
MEF: Malicious Email Filter - A UNIX Mail Filter That Detects Malicious Windows Executables
MEF:恶意电子邮件过滤器 - 检测恶意 Windows 可执行文件的 UNIX 邮件过滤器
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
M. Schultz;Eleazar Eskin;E. Zadok;Manasi Bhattacharyya;Salvatore J. Stolfo - 通讯作者:
Salvatore J. Stolfo
Dealing with large diagonals in kernel matrices
- DOI:
10.1007/bf02530507 - 发表时间:
2003-06-01 - 期刊:
- 影响因子:0.600
- 作者:
Jason Weston;Bernhard Schölkopf;Eleazar Eskin;Christina Leslie;William Stafford Noble - 通讯作者:
William Stafford Noble
Eleazar Eskin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eleazar Eskin', 18)}}的其他基金
III: Medium: Causal inference in biobanks: Leveraging genetics to infer causal relationships using electronic health records
III:中:生物库中的因果推断:利用电子健康记录利用遗传学来推断因果关系
- 批准号:
2106908 - 财政年份:2021
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
III:Small: Replication Studies for High Dimensional Data: Insights into Confounding and Heterogeneity
III:小:高维数据的复制研究:洞察混杂和异质性
- 批准号:
1910885 - 财政年份:2019
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
III: Medium: Detecting Low Dimensional Structures in Genomic Data
III:中:检测基因组数据中的低维结构
- 批准号:
1705197 - 财政年份:2017
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
BSF:2012304:Methods for Preprocessing Population Sequence Data
BSF:2012304:群体序列数据的预处理方法
- 批准号:
1331176 - 财政年份:2013
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
III: Medium: Meta-analysis reinterpreted using causal graphs
III:中:使用因果图重新解释荟萃分析
- 批准号:
1302448 - 财政年份:2013
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
III: Medium: Private Identification of Relatives and Private GWAS: First Steps in the New Field of CryptoGenomics
III:媒介:亲属的私人身份识别和私人 GWAS:密码基因组学新领域的第一步
- 批准号:
1065276 - 财政年份:2011
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
III: Small: Inference of Causal Regulatory Relationships from Genetic Studies
III:小:从遗传研究中推断因果调节关系
- 批准号:
0916676 - 财政年份:2009
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
Collaborative Research: Design and Analysis of Compressed Sensing DNA Microarrays
合作研究:压缩传感 DNA 微阵列的设计和分析
- 批准号:
0729049 - 财政年份:2007
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
Collaborative Research: SEIII: Estimating Haplotype Frequencies
合作研究:SEIII:估计单倍型频率
- 批准号:
0731455 - 财政年份:2007
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Collaborative Research: SEIII: Estimating Haplotype Frequencies
合作研究:SEIII:估计单倍型频率
- 批准号:
0513612 - 财政年份:2005
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Identifying causal pathways in cerebral small vessel disease
确定脑小血管疾病的因果途径
- 批准号:
MR/Y014634/1 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Research Grant
NSF-BSF: AF: Small: Algorithmic and Information-Theoretic Challenges in Causal Inference
NSF-BSF:AF:小:因果推理中的算法和信息论挑战
- 批准号:
2321079 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CNS Core: Small: Causal Reasoning for Data-Driven Networking
CNS 核心:小型:数据驱动网络的因果推理
- 批准号:
2212160 - 财政年份:2022
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
The small intestinal microbiota in undernourished women and undernourished children in Bangladesh: identifying causal mechanisms and therapeutic targets
孟加拉国营养不良妇女和营养不良儿童的小肠微生物群:确定因果机制和治疗目标
- 批准号:
10490421 - 财政年份:2021
- 资助金额:
$ 49.99万 - 项目类别:
Causal inference with small labeled samples
小标记样本的因果推断
- 批准号:
21J14882 - 财政年份:2021
- 资助金额:
$ 49.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The small intestinal microbiota in undernourished women and undernourished children in Bangladesh: identifying causal mechanisms and therapeutic targets
孟加拉国营养不良妇女和营养不良儿童的小肠微生物群:确定因果机制和治疗目标
- 批准号:
10345378 - 财政年份:2021
- 资助金额:
$ 49.99万 - 项目类别:
The small intestinal microbiota in undernourished women and undernourished children in Bangladesh: identifying causal mechanisms and therapeutic targets
孟加拉国营养不良妇女和营养不良儿童的小肠微生物群:确定因果机制和治疗目标
- 批准号:
10632083 - 财政年份:2021
- 资助金额:
$ 49.99万 - 项目类别:
SHF: Small: Towards a Holistic Causal Model for Continuous Software Traceability
SHF:小型:迈向连续软件可追溯性的整体因果模型
- 批准号:
2007246 - 财政年份:2020
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
III: SMALL: Moving Beyond Knowledge to Action: Evaluating and Improving the Utility of Causal Inference
III:小:超越知识到行动:评估和提高因果推理的实用性
- 批准号:
1907951 - 财政年份:2019
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
III: Small: pCAR: Discovering and Leveraging Plausibly Causal (p-causal) Relationships to Understand Complex Dynamic Systems
III:小:pCAR:发现并利用看似合理的因果关系(p-因果)来理解复杂的动态系统
- 批准号:
1909555 - 财政年份:2019
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant