III: Medium: Collaborative Research: Principled Uncertainty Quantification in Deep Learning Models for Time Series Analysis
III:媒介:协作研究:用于时间序列分析的深度学习模型中的原则性不确定性量化
基本信息
- 批准号:2106961
- 负责人:
- 金额:$ 67.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Time series data are ubiquitous in modern science and engineering. An unprecedented amount is being collected in diverse applications such as healthcare systems, the Web, cyber network monitoring, self-driving cars, and Internet-of-Things services. While deep learning has achieved enormous success in time series predictive analysis, a key bottleneck of such models is that they are ignorant about the uncertainties in their predictions. A consequence is that they can produce wildly wrong predictions without noticing---this will lead to misguided decisions, which can be catastrophic in life-critical applications. This project aims to remedy this issue and advance deep learning towards more trustworthy time series analysis. The project will enable principled deep learning models for uncertainty-aware and reliable time series regression and classification without sacrificing their predictive power. Research findings from the project will be incorporated into graduate-level classes, tutorials, and workshops to bring multiple stakeholders and domain scientists together.The technical aims of this project are divided into three thrusts. First, the project will develop novel techniques bridging deep sequential models (e.g., recurrent networks, transformers) with Gaussian processes to quantify uncertainty in the functional space. Second, the project will explore how to learn calibrated deep sequential models and how to further decouple different sources of uncertainties to understand where a model's predictive uncertainty comes from. Third, the project will harness uncertainty to improve the reliability and efficiency of time series predictive systems. These techniques will enjoy the representation power of deep neural networks for modeling complex temporal dependencies in time-series data, while providing principled methodologies for quantifying and leveraging uncertainty for robustness and performance. The developed new models, algorithms, and techniques will be deployed in two important applications for times series analysis: 1) public health monitoring and forecasting, and 2) real-time analysis for mobile sensing time series data. The developed tools will also be open-sourced for trustworthy time series analysis that can benefit many other applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
时间序列数据在现代科学和工程中是无处不在的。在医疗保健系统、网络、网络监控、自动驾驶汽车和物联网服务等各种应用中收集的数据达到了前所未有的水平。虽然深度学习在时间序列预测分析中取得了巨大的成功,但此类模型的一个关键瓶颈是它们对预测中的不确定性一无所知。一个后果是,它们可能会在没有察觉的情况下产生非常错误的预测-这将导致错误的决定,这在至关重要的应用程序中可能是灾难性的。这个项目旨在解决这个问题,并推动深度学习向更可信的时间序列分析迈进。该项目将使有原则的深度学习模型能够在不牺牲其预测能力的情况下,实现对不确定性的感知和可靠的时间序列回归和分类。该项目的研究成果将被纳入研究生级别的课程、教程和研讨会,以将多个利益相关者和领域科学家聚集在一起。该项目的技术目标分为三个方面。首先,该项目将开发新的技术,将深层序列模型(例如,递归网络、变压器)与高斯过程连接起来,以量化功能空间中的不确定性。其次,该项目将探索如何学习校准的深度序列模型,以及如何进一步分离不同的不确定性来源,以了解模型的预测不确定性来自哪里。第三,该项目将利用不确定性来提高时间序列预测系统的可靠性和效率。这些技术将享受深度神经网络的表示能力,用于对时间序列数据中复杂的时间相关性进行建模,同时提供量化和利用不确定性的原则性方法,以提高稳健性和性能。开发的新模型、算法和技术将部署在时间序列分析的两个重要应用中:1)公共健康监测和预测,2)移动传感时间序列数据的实时分析。开发的工具也将是开源的,用于可信的时间序列分析,可以使许多其他应用程序受益。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Actionable Insights in Urban Multivariate Time-series
- DOI:10.1145/3459637.3482410
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Anika Tabassum;S. Chinthavali;Varisara Tansakul;B. Prakash
- 通讯作者:Anika Tabassum;S. Chinthavali;Varisara Tansakul;B. Prakash
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States.
- DOI:10.1073/pnas.2113561119
- 发表时间:2022-04-12
- 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
Back2Future: Leveraging Backfill Dynamics for Improving Real-time Predictions in Future
Back2Future:利用回填动态改进未来的实时预测
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kamarthi, Harshavardhan;Rodriguez, Alexander;Prakash, B. Aditya
- 通讯作者:Prakash, B. Aditya
Sparse Conditional Hidden Markov Model for Weakly Supervised Named Entity Recognition
- DOI:10.1145/3534678.3539247
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Yinghao Li;Le Song;Chao Zhang
- 通讯作者:Yinghao Li;Le Song;Chao Zhang
Autoregressive Diffusion Model for Graph Generation
- DOI:10.48550/arxiv.2307.08849
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Lingkai Kong;Jiaming Cui;Haotian Sun;Yuchen Zhuang;B. Prakash;Chao Zhang
- 通讯作者:Lingkai Kong;Jiaming Cui;Haotian Sun;Yuchen Zhuang;B. Prakash;Chao Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chao Zhang其他文献
Mechanical and thermodynamic properties of layered ThB2C
层状ThB2C的机械和热力学性质
- DOI:
10.1142/s0129183123500262 - 发表时间:
2022-08 - 期刊:
- 影响因子:1.9
- 作者:
Hui Tang;Hong-Yun Wu;Guo-Yong Shi;Kun Cao;Juan Hua;Yue-Hua Su;Chao Zhang;Hong Jiang - 通讯作者:
Hong Jiang
A novel strategy to construct Ti-Si mixed oxides shell for yolk@shell Pt nanocatalyst
一种构建 yolk@shell Pt 纳米催化剂 Ti-Si 混合氧化物壳的新策略
- DOI:
10.1016/j.matlet.2016.11.027 - 发表时间:
2017-02 - 期刊:
- 影响因子:3
- 作者:
Chao Zhang;Yuming Zhou;Yiwei Zhang;Shuo Zhao;Jiasheng Fang;Xiaoli Sheng;Hongxing Zhang - 通讯作者:
Hongxing Zhang
Picosecond terahertz pump–probe realized from Chinese terahertz free-electron laser
国产太赫兹自由电子激光器实现皮秒太赫兹泵浦探针
- DOI:
10.1088/1674-1056/ab961b - 发表时间:
2020-05 - 期刊:
- 影响因子:1.7
- 作者:
Chao Wang;Wen Xu;Hong-Ying Mei;Hua Qin;Xin-Nian Zhao;Hua Wen;Chao Zhang;Lan Ding;Yong Xu;Peng Li;Dai Wu;Ming Li - 通讯作者:
Ming Li
Highly Stretchable and Reconfigurable Ionogels with Unprecedented Thermoplasticity and Ultrafast Self-Healability Enabled by Gradient-Responsive Networks
梯度响应网络实现的高度可拉伸和可重构的离子凝胶,具有前所未有的热塑性和超快自愈性
- DOI:
10.1021/acs.macromol.1c00443 - 发表时间:
2021-04 - 期刊:
- 影响因子:5.5
- 作者:
Yufeng Wang;Ying Liu;Roshan Plamthottam;Mike Tebyetekerwa;Jingsan Xu;Jixin Zhu;Chao Zhang;Tianxi Liu - 通讯作者:
Tianxi Liu
Steady-state interval detection and nonlinear modeling for automatic generation control systems
自动发电控制系统的稳态区间检测和非线性建模
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Pengfei Cao;Ji;ong Wang;Chao Zhang - 通讯作者:
Chao Zhang
Chao Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chao Zhang', 18)}}的其他基金
CAREER: Accelerating Spatial Network Design: An Uncertainty-Driven Predict-and-Optimize Learning Framework
职业:加速空间网络设计:不确定性驱动的预测和优化学习框架
- 批准号:
2144338 - 财政年份:2022
- 资助金额:
$ 67.53万 - 项目类别:
Continuing Grant
Discovery Projects - Grant ID: DP210101436
发现项目 - 拨款 ID:DP210101436
- 批准号:
ARC : DP210101436 - 财政年份:2021
- 资助金额:
$ 67.53万 - 项目类别:
Discovery Projects
CAREER: Chemical Genetic Dissection of Cell Signaling
职业:细胞信号转导的化学遗传学剖析
- 批准号:
1455306 - 财政年份:2015
- 资助金额:
$ 67.53万 - 项目类别:
Continuing Grant
SCH: INT: Collaborative Research: High-throughput Phenotyping on Electronic Health Records using Multi-Tensor Factorization
SCH:INT:协作研究:使用多张量分解对电子健康记录进行高通量表型分析
- 批准号:
1418511 - 财政年份:2014
- 资助金额:
$ 67.53万 - 项目类别:
Standard Grant
Analysis, simulation, fabrication and characterization of reliable, robust and scalable compact cooling elements based on semiconductor nanostructures
基于半导体纳米结构的可靠、稳健和可扩展的紧凑型冷却元件的分析、模拟、制造和表征
- 批准号:
ARC : DP0343516 - 财政年份:2003
- 资助金额:
$ 67.53万 - 项目类别:
Discovery Projects
Development of Solid-state cooling chips
固态散热芯片的开发
- 批准号:
ARC : LX0240472 - 财政年份:2002
- 资助金额:
$ 67.53万 - 项目类别:
Linkage - International
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 67.53万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 67.53万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 67.53万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 67.53万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 67.53万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 67.53万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 67.53万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 67.53万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 67.53万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310113 - 财政年份:2023
- 资助金额:
$ 67.53万 - 项目类别:
Standard Grant