Collaborative Research:CNS Core:Medium:Unlinking the (Block)chain: Scalable Byzantine-Tolerant Databases

合作研究:CNS 核心:中:断开(区块)链:可扩展的拜占庭容忍数据库

基本信息

  • 批准号:
    2106954
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This project proposes a new architecture for enabling safe and secure data sharing among mutually distrustful parties. Blockchains are today the platform of choice for such needs. They offer the appealing abstraction of a shared, totally-ordered, tamper-resistant log of operations, implemented via a distributed protocol run by a collection of computing nodes, each replicating the entire state of the log. While the details of these protocols vary for different blockchain implementations, they all rely on an underlying architecture that suffers from two key limitations. First, it predicates correctness and integrity on an execution model where replicas process operations sequentially, according to the same total order; this quickly becomes a performance bottleneck. Second, it complicates deployment. The need for all replicas store the full body of data stored in the blockchain is not only resource intensive, but can be legally problematic: GDPR laws, for instance, severely restrict where personally identifiable data (such as banking or medical records) of European citizens can reside. This project overcomes these limitations by implementing the blockchain abstraction on a novel foundation, and, in so doing, demonstrates that efficient data processing and the decentralization of trust can go hand-in-hand. At its core is a key insight gained from prior research in databases – namely, that is possible to implement the abstraction of a totally ordered sequence of transactions without requiring all of their operations to be actually executed sequentially. To leverage the opportunity for greater parallelism offered by this insight, this project will develop the first geo-distributed database provably resilient to malicious sabotage, whether from some of the computing nodes implementing the database or from clients of the database. Today, there exists no rigorous specification of what correctness would even mean in such a database; this project will introduce such correctness specification, based on the ethos of bounding the influence that malicious actors (whether among the replicas implementing the database or among its clients) can have on the outcome of transactions submitted by correct clients. It will then develop new algorithmic techniques that, despite adversarial attempts to the contrary, implement the blockchain abstraction while provably enforcing these correctness conditions. To simplify deployment, this project will focus on drastically reducing the degree of replication necessary to support blockchains. Specifically, it will refine the blockchain’s current threat model to decouple the degree of replication needed to ensure that no data will be lost from what is required to guarantee the integrity of the blockchain execution; this will make it possible to relax the requirement that all replicas store the entire state of the blockchain, and thus lead to easier regulatory compliance. Tighter integration among mutually untrusted parties can be transformative for a variety of applications, including healthcare, financial services, and supply chain management. Databases are natural candidates for supporting this integration, but currently lack a way to express and efficiently enforce correctness when some actors behave maliciously. This work builds that conceptual framework, leveraging a novel architecture that makes it easier to comply with data use regulations, and instantiates it in working prototypes that will be rigorously evaluated for performance and robustness. The synergy between theory and engineering critical for the success of this project is also crucial to the education of the next generation of system engineers: they will have to negotiate issues of performance, fault-tolerance, and trust in the ubiquitous large-scale distributed systems that underpin most industries today. Proposed lecture and project materials will prepare students to apply a principled approach to building trustworthy distributed systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目提出了一种新的架构,用于在互不信任的各方之间实现安全可靠的数据共享。如今,区块链是满足这些需求的首选平台。它们提供了一个共享的、完全有序的、防篡改的操作日志的吸引人的抽象,通过一个由计算节点集合运行的分布式协议实现,每个节点复制日志的整个状态。虽然这些协议的细节因不同的区块链实现而异,但它们都依赖于受到两个关键限制的底层架构。首先,它在执行模型上断言正确性和完整性,其中副本根据相同的总顺序处理操作;这很快成为性能瓶颈。第二,部署复杂化。需要所有副本存储存储在区块链中的全部数据不仅是资源密集型的,而且可能存在法律问题:例如,GDPR法律严格限制欧洲公民的个人身份数据(如银行或医疗记录)可以驻留在哪里。该项目通过在一个新的基础上实现区块链抽象来克服这些局限性,并在此过程中证明了有效的数据处理和信任的分散可以齐头并进。 它的核心是从数据库中先前的研究中获得的关键见解-即,可以实现完全有序的事务序列的抽象,而不需要实际顺序执行所有操作。 为了利用这一洞察力提供的更大并行性的机会,该项目将开发第一个地理分布式数据库,该数据库可证明对恶意破坏具有弹性,无论是来自实施数据库的一些计算节点还是来自数据库的客户端。 今天,在这样的数据库中,甚至没有严格的正确性规范;这个项目将引入这样的正确性规范,基于限制恶意行为者(无论是在实现数据库的副本中还是在其客户端中)对正确客户端提交的事务结果的影响。然后,它将开发新的算法技术,尽管有相反的对抗性尝试,但在可证明地执行这些正确性条件的同时,实现区块链抽象。 为了简化部署,该项目将专注于大幅减少支持区块链所需的复制程度。具体来说,它将改进区块链当前的威胁模型,以将确保没有数据丢失所需的复制程度与保证区块链执行完整性所需的复制程度解耦;这将使放宽所有副本存储区块链整个状态的要求成为可能,从而更容易实现监管合规。 相互不信任的各方之间更紧密的集成可以为各种应用程序带来变革,包括医疗保健,金融服务和供应链管理。数据库是支持这种集成的自然候选者,但目前缺乏一种方法来表达和有效地实施正确性时,一些演员的恶意行为。这项工作构建了概念框架,利用一种新的架构,使其更容易遵守数据使用法规,并将其实例化为工作原型,这些原型将被严格评估性能和鲁棒性。理论和工程之间的协同作用对于这个项目的成功至关重要,对于下一代系统工程师的教育也至关重要:他们将不得不在无处不在的大规模分布式系统中谈判性能,容错和信任问题,这些系统是当今大多数行业的基础。建议的讲座和项目材料将帮助学生准备应用原则性的方法来构建值得信赖的分布式系统。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Safe Permissionless Consensus
安全无需许可的共识
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lorenzo Alvisi其他文献

Special issue on PODC 2009
  • DOI:
    10.1007/s00446-011-0136-6
  • 发表时间:
    2011-08-30
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Lorenzo Alvisi
  • 通讯作者:
    Lorenzo Alvisi
Weaponizing Disinformation Against Critical Infrastructures
将针对关键基础设施的虚假信息武器化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lorenzo Alvisi;John Bianchi;Sara Tibido;Maria Vittoria Zucca
  • 通讯作者:
    Maria Vittoria Zucca
Unraveling the Italian and English Telegram Conspiracy Spheres through Message Forwarding
通过消息转发揭开意大利语和英语电报阴谋领域
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lorenzo Alvisi;S. Tardelli;Maurizio Tesconi
  • 通讯作者:
    Maurizio Tesconi
Motorway: Seamless high speed BFT
高速公路:无缝高速 BFT
  • DOI:
    10.48550/arxiv.2401.10369
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Giridharan;Florian Suri;Ittai Abraham;Lorenzo Alvisi;Natacha Crooks
  • 通讯作者:
    Natacha Crooks

Lorenzo Alvisi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lorenzo Alvisi', 18)}}的其他基金

Collaborative Research: CNS CORE: Small: Scalable ACID Transactions for Persistent Memory Databases
合作研究:CNS CORE:小型:持久内存数据库的可扩展 ACID 事务
  • 批准号:
    2008667
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CSR: Medium: Salt: combining ACID and BASE in a distributed database
CSR:中:Salt:在分布式数据库中结合 ACID 和 BASE
  • 批准号:
    1758043
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CSR: Small: Client-Centric Consistency
CSR:小:以客户为中心的一致性
  • 批准号:
    1718709
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CSR: Small: Client-Centric Consistency
CSR:小:以客户为中心的一致性
  • 批准号:
    1762015
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Workshop: Programming: Logics, Models, Algorithms and Concurrency
研讨会:编程:逻辑、模型、算法和并发
  • 批准号:
    1636774
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CSR: Medium: Salt: combining ACID and BASE in a distributed database
CSR:中:Salt:在分布式数据库中结合 ACID 和 BASE
  • 批准号:
    1409555
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CSR-PDOS: BFT: The Time is Now
CSR-PDOS:BFT:现在就是时候
  • 批准号:
    0720649
  • 财政年份:
    2007
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Travel and Registration Support for Third Bertinoro Workshop on Future of Distributed Computing
第三届贝尔蒂诺罗分布式计算未来研讨会的差旅和注册支持
  • 批准号:
    0737816
  • 财政年份:
    2007
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CSR---PDOS: Byzantine faults in a rational world
CSR---PDOS:理性世界中的拜占庭错误
  • 批准号:
    0509338
  • 财政年份:
    2005
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Byzantine Replication for Trustworthy Systems
值得信赖系统的拜占庭复制
  • 批准号:
    0430510
  • 财政年份:
    2004
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了